Beispiel #1
0
    def __call__(self, equations, variables=None, method_options=None):
        logger.warn("The 'independent' state updater is deprecated and might be "
                    "removed in future versions of Brian.",
                    'deprecated_independent', once=True)
        method_options = extract_method_options(method_options, {})
        if equations.is_stochastic:
            raise UnsupportedEquationsException('Cannot solve stochastic '
                                                'equations with this state '
                                                'updater')
        if variables is None:
            variables = {}

        diff_eqs = equations.get_substituted_expressions(variables)

        t = Symbol('t', real=True, positive=True)
        dt = Symbol('dt', real=True, positive=True)
        t0 = Symbol('t0', real=True, positive=True)

        code = []
        for name, expression in diff_eqs:
            rhs = str_to_sympy(expression.code, variables)

            # We have to be careful and use the real=True assumption as well,
            # otherwise sympy doesn't consider the symbol a match to the content
            # of the equation
            var = Symbol(name, real=True)
            f = sp.Function(name)
            rhs = rhs.subs(var, f(t))
            derivative = sp.Derivative(f(t), t)
            diff_eq = sp.Eq(derivative, rhs)
            # TODO: simplify=True sometimes fails with 0.7.4, see:
            # https://github.com/sympy/sympy/issues/2666
            try:
                general_solution = sp.dsolve(diff_eq, f(t), simplify=True)
            except RuntimeError:
                general_solution = sp.dsolve(diff_eq, f(t), simplify=False)
            # Check whether this is an explicit solution
            if not getattr(general_solution, 'lhs', None) == f(t):
                raise UnsupportedEquationsException('Cannot explicitly solve: '
                                                    + str(diff_eq))
            # Solve for C1 (assuming "var" as the initial value and "t0" as time)
            if general_solution.has(Symbol('C1')):
                if general_solution.has(Symbol('C2')):
                    raise UnsupportedEquationsException('Too many constants in solution: %s' % str(general_solution))
                constant_solution = sp.solve(general_solution, Symbol('C1'))
                if len(constant_solution) != 1:
                    raise UnsupportedEquationsException(("Couldn't solve for the constant "
                                                         "C1 in : %s ") % str(general_solution))
                constant = constant_solution[0].subs(t, t0).subs(f(t0), var)
                solution = general_solution.rhs.subs('C1', constant)
            else:
                solution = general_solution.rhs.subs(t, t0).subs(f(t0), var)
            # Evaluate the expression for one timestep
            solution = solution.subs(t, t + dt).subs(t0, t)
            # only try symplifying it -- it sometimes raises an error
            try:
                solution = solution.simplify()
            except ValueError:
                pass

            code.append(name + ' = ' + sympy_to_str(solution))

        return '\n'.join(code)
Beispiel #2
0
    def __call__(self, equations, variables=None, method_options=None):
        logger.warn(
            "The 'independent' state updater is deprecated and might be "
            "removed in future versions of Brian.",
            'deprecated_independent',
            once=True)
        extract_method_options(method_options, {})
        if equations.is_stochastic:
            raise UnsupportedEquationsException("Cannot solve stochastic "
                                                "equations with this state "
                                                "updater")
        if variables is None:
            variables = {}

        diff_eqs = equations.get_substituted_expressions(variables)

        t = Symbol('t', real=True, positive=True)
        dt = Symbol('dt', real=True, positive=True)
        t0 = Symbol('t0', real=True, positive=True)

        code = []
        for name, expression in diff_eqs:
            rhs = str_to_sympy(expression.code, variables)

            # We have to be careful and use the real=True assumption as well,
            # otherwise sympy doesn't consider the symbol a match to the content
            # of the equation
            var = Symbol(name, real=True)
            f = sp.Function(name)
            rhs = rhs.subs(var, f(t))
            derivative = sp.Derivative(f(t), t)
            diff_eq = sp.Eq(derivative, rhs)
            # TODO: simplify=True sometimes fails with 0.7.4, see:
            # https://github.com/sympy/sympy/issues/2666
            try:
                general_solution = sp.dsolve(diff_eq, f(t), simplify=True)
            except RuntimeError:
                general_solution = sp.dsolve(diff_eq, f(t), simplify=False)
            # Check whether this is an explicit solution
            if not getattr(general_solution, 'lhs', None) == f(t):
                raise UnsupportedEquationsException(
                    f"Cannot explicitly solve: {str(diff_eq)}")
            # Solve for C1 (assuming "var" as the initial value and "t0" as time)
            if general_solution.has(Symbol('C1')):
                if general_solution.has(Symbol('C2')):
                    raise UnsupportedEquationsException(
                        f'Too many constants in solution: {str(general_solution)}'
                    )
                constant_solution = sp.solve(general_solution, Symbol('C1'))
                if len(constant_solution) != 1:
                    raise UnsupportedEquationsException(
                        ("Couldn't solve for the constant "
                         "C1 in : %s ") % str(general_solution))
                constant = constant_solution[0].subs(t, t0).subs(f(t0), var)
                solution = general_solution.rhs.subs('C1', constant)
            else:
                solution = general_solution.rhs.subs(t, t0).subs(f(t0), var)
            # Evaluate the expression for one timestep
            solution = solution.subs(t, t + dt).subs(t0, t)
            # only try symplifying it -- it sometimes raises an error
            try:
                solution = solution.simplify()
            except ValueError:
                pass

            code.append(f"{name} = {sympy_to_str(solution)}")

        return '\n'.join(code)
Beispiel #3
0
    def __call__(self, equations, variables=None, method_options=None):
        method_options = extract_method_options(method_options,
                                                {'simplify': True})

        if equations.is_stochastic:
            raise UnsupportedEquationsException('Cannot solve stochastic '
                                                'equations with this state '
                                                'updater.')
        if variables is None:
            variables = {}

        # Get a representation of the ODE system in the form of
        # dX/dt = M*X + B
        varnames, matrix, constants = get_linear_system(equations, variables)

        # No differential equations, nothing to do (this occurs sometimes in the
        # test suite where the whole model is nothing more than something like
        # 'v : 1')
        if matrix.shape == (0, 0):
            return ''

        # Make sure that the matrix M is constant, i.e. it only contains
        # external variables or constant variables
        t = Symbol('t', real=True, positive=True)

        # Check for time dependence
        dt_value = variables['dt'].get_value()[0] if 'dt' in variables else None

        # This will raise an error if we meet the symbol "t" anywhere
        # except as an argument of a locally constant function
        for entry in itertools.chain(matrix, constants):
            if not is_constant_over_dt(entry, variables, dt_value):
                raise UnsupportedEquationsException(
                    ('Expression "{}" is not guaranteed to be constant over a '
                     'time step').format(sympy_to_str(entry)))

        symbols = [Symbol(variable, real=True) for variable in varnames]
        solution = sp.solve_linear_system(matrix.row_join(constants), *symbols)
        if solution is None or set(symbols) != set(solution.keys()):
            raise UnsupportedEquationsException('Cannot solve the given '
                                                'equations with this '
                                                'stateupdater.')
        b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols])

        # Solve the system
        dt = Symbol('dt', real=True, positive=True)
        try:
            A = (matrix * dt).exp()
        except NotImplementedError:
            raise UnsupportedEquationsException('Cannot solve the given '
                                                'equations with this '
                                                'stateupdater.')
        if method_options['simplify']:
            A = A.applyfunc(lambda x:
                            sp.factor_terms(sp.cancel(sp.signsimp(x))))
        C = sp.ImmutableMatrix(A * b) - b
        _S = sp.MatrixSymbol('_S', len(varnames), 1)
        updates = A * _S + C
        updates = updates.as_explicit()

        # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables,
        # replace them with the state variable names 
        abstract_code = []
        for idx, (variable, update) in enumerate(zip(varnames, updates)):
            rhs = update
            if rhs.has(I, re, im):
                raise UnsupportedEquationsException('The solution to the linear system '
                                                    'contains complex values '
                                                    'which is currently not implemented.')
            for row_idx, varname in enumerate(varnames):
                rhs = rhs.subs(_S[row_idx, 0], varname)

            # Do not overwrite the real state variables yet, the update step
            # of other state variables might still need the original values
            abstract_code.append('_' + variable + ' = ' + sympy_to_str(rhs))

        # Update the state variables
        for variable in varnames:
            abstract_code.append('{variable} = _{variable}'.format(variable=variable))
        return '\n'.join(abstract_code)
Beispiel #4
0
    def __call__(self, equations, variables=None, method_options=None):
        method_options = extract_method_options(method_options,
                                                {'simplify': True})

        if equations.is_stochastic:
            raise UnsupportedEquationsException("Cannot solve stochastic "
                                                "equations with this state "
                                                "updater.")
        if variables is None:
            variables = {}

        # Get a representation of the ODE system in the form of
        # dX/dt = M*X + B
        varnames, matrix, constants = get_linear_system(equations, variables)

        # No differential equations, nothing to do (this occurs sometimes in the
        # test suite where the whole model is nothing more than something like
        # 'v : 1')
        if matrix.shape == (0, 0):
            return ''

        # Make sure that the matrix M is constant, i.e. it only contains
        # external variables or constant variables

        # Check for time dependence
        dt_value = variables['dt'].get_value(
        )[0] if 'dt' in variables else None

        # This will raise an error if we meet the symbol "t" anywhere
        # except as an argument of a locally constant function
        for entry in itertools.chain(matrix, constants):
            if not is_constant_over_dt(entry, variables, dt_value):
                raise UnsupportedEquationsException(
                    f"Expression '{sympy_to_str(entry)}' is not guaranteed to be "
                    f"constant over a time step.")

        symbols = [Symbol(variable, real=True) for variable in varnames]
        solution = sp.solve_linear_system(matrix.row_join(constants), *symbols)
        if solution is None or set(symbols) != set(solution.keys()):
            raise UnsupportedEquationsException("Cannot solve the given "
                                                "equations with this "
                                                "stateupdater.")
        b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols])

        # Solve the system
        dt = Symbol('dt', real=True, positive=True)
        try:
            A = (matrix * dt).exp()
        except NotImplementedError:
            raise UnsupportedEquationsException("Cannot solve the given "
                                                "equations with this "
                                                "stateupdater.")
        if method_options['simplify']:
            A = A.applyfunc(
                lambda x: sp.factor_terms(sp.cancel(sp.signsimp(x))))
        C = sp.ImmutableMatrix(A * b) - b
        _S = sp.MatrixSymbol('_S', len(varnames), 1)
        updates = A * _S + C
        updates = updates.as_explicit()

        # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables,
        # replace them with the state variable names
        abstract_code = []
        for idx, (variable, update) in enumerate(zip(varnames, updates)):
            rhs = update
            if rhs.has(I, re, im):
                raise UnsupportedEquationsException(
                    "The solution to the linear system "
                    "contains complex values "
                    "which is currently not implemented.")
            for row_idx, varname in enumerate(varnames):
                rhs = rhs.subs(_S[row_idx, 0], varname)

            # Do not overwrite the real state variables yet, the update step
            # of other state variables might still need the original values
            abstract_code.append(f"_{variable} = {sympy_to_str(rhs)}")

        # Update the state variables
        for variable in varnames:
            abstract_code.append(f"{variable} = _{variable}")
        return '\n'.join(abstract_code)