def _run_interface(self, runtime):
        EPI_data, EPI_voxel_sizes = broccoli.load_EPI(self.inputs.epi_file)
        T1_data, T1_voxel_sizes = broccoli.load_T1(self.inputs.t1_file)

        filters_parametric_mat = scipy.io.loadmat(self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(self.inputs.filters_nonparametric)

        filters_parametric = [filters_parametric_mat['f%d_parametric_registration' % (i+1)] for i in range(3)]
        filters_nonparametric = [filters_nonparametric_mat['f%d_nonparametric_registration' % (i+1)] for i in range(6)]

        projection_tensor = [filters_nonparametric_mat['m%d' % (i+1)][0] for i in range(6)]
        filter_directions = [filters_nonparametric_mat['filter_directions_%s' % d][0] for d in ['x', 'y', 'z']]

        (Aligned_EPI_Volume, Interpolated_EPI_Volume,
          Registration_Parameters, Phase_Differences, Phase_Certainties, Phase_Gradients) = broccoli.registerEPIT1(
            EPI_data, EPI_voxel_sizes, T1_data, T1_voxel_sizes,
            filters_parametric, filters_nonparametric, projection_tensor, filter_directions,
            20, int(round(8.0 / T1_voxel_sizes[0])), 20, self.inputs.opencl_platform, self.inputs.opencl_device, self.inputs.show_results,
        )

        T1_nni = nb.load(self.inputs.t1_file)
        aligned_EPI_nni = nb.Nifti1Image(Aligned_EPI_Volume, None, T1_nni.get_header())
        nb.save(aligned_EPI_nni, self._get_output_filename('_aligned.nii'))

        interpolated_EPI_nni = nb.Nifti1Image(Interpolated_EPI_Volume, None, T1_nni.get_header())
        nb.save(interpolated_EPI_nni, self._get_output_filename('_interpolated.nii'))

        return runtime
    def _run_interface(self, runtime):
        T1_data, T1_voxel_sizes = broccoli.load_T1(self.inputs.t1_file)
        MNI_data, MNI_brain_data, MNI_brain_mask_data, MNI_voxel_sizes = broccoli.load_MNI_templates(self.inputs.mni_file)

        filters_parametric_mat = scipy.io.loadmat(self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(self.inputs.filters_nonparametric)

        filters_parametric = [filters_parametric_mat['f%d_parametric_registration' % (i+1)] for i in range(3)]
        filters_nonparametric = [filters_nonparametric_mat['f%d_nonparametric_registration' % (i+1)] for i in range(6)]

        projection_tensor = [filters_nonparametric_mat['m%d' % (i+1)][0] for i in range(6)]
        filter_directions = [filters_nonparametric_mat['filter_directions_%s' % d][0] for d in ['x', 'y', 'z']]

        (Aligned_T1_Volume, Aligned_T1_Volume_NonParametric, Skullstripped_T1_Volume, Interpolated_T1_Volume,
        Registration_Parameters, Phase_Differences, Phase_Certainties, Phase_Gradients, Slice_Sums, Top_Slice, A_Matrix, h_Vector) = broccoli.registerT1MNI(
            T1_data, T1_voxel_sizes,
            MNI_data, MNI_voxel_sizes, MNI_brain_data, MNI_brain_mask_data,
            filters_parametric, filters_nonparametric, projection_tensor, filter_directions,
            10, 15, int(round(8 / MNI_voxel_sizes[0])), 30, self.inputs.opencl_platform, self.inputs.opencl_device, self.inputs.show_results,
        )

        MNI_nni = nb.load(self.inputs.mni_file)
        aligned_T1_nni = nb.Nifti1Image(Aligned_T1_Volume, None, MNI_nni.get_header())
        nb.save(aligned_T1_nni, self._get_output_filename('_aligned.nii'))

        interpolated_T1_nni = nb.Nifti1Image(Interpolated_T1_Volume, None, MNI_nni.get_header())
        nb.save(interpolated_T1_nni, self._get_output_filename('_interpolated.nii'))

        return runtime
Beispiel #3
0
    def _run_interface(self, runtime):
        EPI_data, EPI_voxel_sizes = broccoli.load_EPI(self.inputs.epi_file)
        T1_data, T1_voxel_sizes = broccoli.load_T1(self.inputs.t1_file)

        filters_parametric_mat = scipy.io.loadmat(
            self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(
            self.inputs.filters_nonparametric)

        filters_parametric = [
            filters_parametric_mat['f%d_parametric_registration' % (i + 1)]
            for i in range(3)
        ]
        filters_nonparametric = [
            filters_nonparametric_mat['f%d_nonparametric_registration' %
                                      (i + 1)] for i in range(6)
        ]

        projection_tensor = [
            filters_nonparametric_mat['m%d' % (i + 1)][0] for i in range(6)
        ]
        filter_directions = [
            filters_nonparametric_mat['filter_directions_%s' % d][0]
            for d in ['x', 'y', 'z']
        ]

        (Aligned_EPI_Volume, Interpolated_EPI_Volume, Registration_Parameters,
         Phase_Differences, Phase_Certainties,
         Phase_Gradients) = broccoli.registerEPIT1(
             EPI_data,
             EPI_voxel_sizes,
             T1_data,
             T1_voxel_sizes,
             filters_parametric,
             filters_nonparametric,
             projection_tensor,
             filter_directions,
             20,
             int(round(8.0 / T1_voxel_sizes[0])),
             20,
             self.inputs.opencl_platform,
             self.inputs.opencl_device,
             self.inputs.show_results,
         )

        T1_nni = nb.load(self.inputs.t1_file)
        aligned_EPI_nni = nb.Nifti1Image(Aligned_EPI_Volume, None,
                                         T1_nni.get_header())
        nb.save(aligned_EPI_nni, self._get_output_filename('_aligned.nii'))

        interpolated_EPI_nni = nb.Nifti1Image(Interpolated_EPI_Volume, None,
                                              T1_nni.get_header())
        nb.save(interpolated_EPI_nni,
                self._get_output_filename('_interpolated.nii'))

        return runtime
Beispiel #4
0
    def _run_interface(self, runtime):
        
        MNI, MNI_brain, MNI_brain_mask, MNI_voxel_sizes = broccoli.load_MNI_templates(self.inputs.MNI_file, self.inputs.MNI_brain_file, self.inputs.MNI_brain_mask_file)
        fMRI, fMRI_voxel_sizes = broccoli.load_EPI(self.inputs.fMRI_file, only_volume=False)
        T1, T1_voxel_sizes = broccoli.load_T1(self.inputs.T1_file)
        
        filters_parametric_mat = scipy.io.loadmat(self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(self.inputs.filters_nonparametric)
        filters_parametric = [filters_parametric_mat['f%d_parametric_registration' % (i+1)] for i in range(3)]
        filters_nonparametric = [filters_nonparametric_mat['f%d_nonparametric_registration' % (i+1)] for i in range(6)]
        projection_tensor = [filters_nonparametric_mat['m%d' % (i+1)][0] for i in range(6)]
        filter_directions = [filters_nonparametric_mat['filter_directions_%s' % d][0] for d in ['x', 'y', 'z']]
        
        X_GLM = self.load_regressors(fMRI.shape[3])
        print("X_GLM.shape = %s", X_GLM.shape)
        # print("X_GLM = %s", X_GLM)
        xtx = np.linalg.inv(np.dot(X_GLM.T, X_GLM))
        print("xtx.shape = %s", xtx.shape)
        xtxxt_GLM = xtx.dot(X_GLM.T)

        confounds = 1
        if self.inputs.regress_confounds:
            confounds = np.loadtxt(self.inputs.confounds_file)

        contrasts = np.array([[1, 0]])
        print("contrasts = %s" % contrasts)
        ctxtxc_GLM = [contrasts[i:i+1].dot(xtx).dot(contrasts[i:i+1].T) for i in range(len(contrasts))]
        print("ctxtxc_GLM = %s" % ctxtxc_GLM)
        
        fMRI_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]
        T1_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]
        MNI_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]
        
        print("Parameters: %s" % self.inputs)
        
        statistical_maps = broccoli.performFirstLevelAnalysis(
            fMRI, fMRI_voxel_sizes, T1, T1_voxel_sizes, MNI, MNI_brain, MNI_brain_mask, MNI_voxel_sizes,
            filters_parametric, filters_nonparametric, projection_tensor, filter_directions,
            self.inputs.iterations_parametric, self.inputs.iterations_nonparametric, self.inputs.iterations_motion_correction, 4, 4, 0, 0,
            self.inputs.regress_motion, self.inputs.EPI_smoothing, self.inputs.AR_smoothing, X_GLM, xtxxt_GLM.transpose(), contrasts, ctxtxc_GLM,
            self.inputs.use_temporal_derivatives, getattr(broccoli, self.inputs.beta_space), confounds, self.inputs.regress_confounds,
            self.inputs.opencl_platform, self.inputs.opencl_device, self.inputs.show_results,
        )
        
        
        EPI_nni = nb.load(self.inputs.fMRI_file)
        aligned_EPI_nni = nb.Nifti1Image(statistical_maps, None, EPI_nni.get_header())
        nb.save(aligned_EPI_nni, self._get_output_filename('statistical_map.nii'))
      
        return runtime
Beispiel #5
0
        '--filters-parametric-file',
        type=str,
        default="../Matlab_Wrapper/filters_for_parametric_registration.mat")
    parser.add_argument(
        '--filters-nonparametric-file',
        type=str,
        default="../Matlab_Wrapper/filters_for_nonparametric_registration.mat")

    parser.add_argument('--mm-t1-z-cut', type=int, default=30)
    parser.add_argument('--show-results', action='store_true')

    args = parser.parse_args()

    (MNI, MNI_brain, MNI_brain_mask,
     MNI_voxel_sizes) = broccoli.load_MNI_templates(args.mni_file)
    (T1, T1_voxel_sizes) = broccoli.load_T1(args.t1_file)

    coarsest_scale = int(round(8 / MNI_voxel_sizes[0]))

    filters_parametric_mat = scipy.io.loadmat(args.filters_parametric_file)
    filters_nonparametric_mat = scipy.io.loadmat(
        args.filters_nonparametric_file)

    parametric_filters = [
        filters_parametric_mat['f%d_parametric_registration' % (i + 1)]
        for i in range(3)
    ]
    nonparametric_filters = [
        filters_nonparametric_mat['f%d_nonparametric_registration' % (i + 1)]
        for i in range(6)
    ]
Beispiel #6
0
    def _run_interface(self, runtime):
        T1_data, T1_voxel_sizes = broccoli.load_T1(self.inputs.t1_file)
        MNI_data, MNI_brain_data, MNI_brain_mask_data, MNI_voxel_sizes = broccoli.load_MNI_templates(
            self.inputs.mni_file)

        filters_parametric_mat = scipy.io.loadmat(
            self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(
            self.inputs.filters_nonparametric)

        filters_parametric = [
            filters_parametric_mat['f%d_parametric_registration' % (i + 1)]
            for i in range(3)
        ]
        filters_nonparametric = [
            filters_nonparametric_mat['f%d_nonparametric_registration' %
                                      (i + 1)] for i in range(6)
        ]

        projection_tensor = [
            filters_nonparametric_mat['m%d' % (i + 1)][0] for i in range(6)
        ]
        filter_directions = [
            filters_nonparametric_mat['filter_directions_%s' % d][0]
            for d in ['x', 'y', 'z']
        ]

        (Aligned_T1_Volume, Aligned_T1_Volume_NonParametric,
         Skullstripped_T1_Volume, Interpolated_T1_Volume,
         Registration_Parameters, Phase_Differences, Phase_Certainties,
         Phase_Gradients, Slice_Sums, Top_Slice, A_Matrix,
         h_Vector) = broccoli.registerT1MNI(
             T1_data,
             T1_voxel_sizes,
             MNI_data,
             MNI_voxel_sizes,
             MNI_brain_data,
             MNI_brain_mask_data,
             filters_parametric,
             filters_nonparametric,
             projection_tensor,
             filter_directions,
             10,
             15,
             int(round(8 / MNI_voxel_sizes[0])),
             30,
             self.inputs.opencl_platform,
             self.inputs.opencl_device,
             self.inputs.show_results,
         )

        MNI_nni = nb.load(self.inputs.mni_file)
        aligned_T1_nni = nb.Nifti1Image(Aligned_T1_Volume, None,
                                        MNI_nni.get_header())
        nb.save(aligned_T1_nni, self._get_output_filename('_aligned.nii'))

        interpolated_T1_nni = nb.Nifti1Image(Interpolated_T1_Volume, None,
                                             MNI_nni.get_header())
        nb.save(interpolated_T1_nni,
                self._get_output_filename('_interpolated.nii'))

        return runtime
  parser.add_argument('--mni-brain-mask-file', type=str)
  parser.add_argument('--t1-file', type=str, required=True)

  parser.add_argument('--iterations-parametric', type=int, default=10)
  parser.add_argument('--iterations-nonparametric', type=int, default=15)

  parser.add_argument('--filters-parametric-file', type=str, default="../Matlab_Wrapper/filters_for_parametric_registration.mat")
  parser.add_argument('--filters-nonparametric-file', type=str, default="../Matlab_Wrapper/filters_for_nonparametric_registration.mat")

  parser.add_argument('--mm-t1-z-cut', type=int, default=30)
  parser.add_argument('--show-results', action='store_true')

  args = parser.parse_args()

  (MNI, MNI_brain, MNI_brain_mask, MNI_voxel_sizes) = broccoli.load_MNI_templates(args.mni_file)
  (T1, T1_voxel_sizes) = broccoli.load_T1(args.t1_file)

  coarsest_scale = int(round(8 / MNI_voxel_sizes[0]))

  filters_parametric_mat = scipy.io.loadmat(args.filters_parametric_file)
  filters_nonparametric_mat = scipy.io.loadmat(args.filters_nonparametric_file)

  parametric_filters = [filters_parametric_mat['f%d_parametric_registration' % (i+1)] for i in range(3)]
  nonparametric_filters = [filters_nonparametric_mat['f%d_nonparametric_registration' % (i+1)] for i in range(6)]

  results = broccoli.registerT1MNI(T1, T1_voxel_sizes, MNI, MNI_voxel_sizes, MNI_brain, MNI_brain_mask, parametric_filters, nonparametric_filters,
                [filters_nonparametric_mat['m%d' % (i+1)][0] for i in range(6)],
                [filters_nonparametric_mat['filter_directions_%s' % d][0] for d in ['x', 'y', 'z']],
                args.iterations_parametric,
                args.iterations_nonparametric,
                coarsest_scale,
Beispiel #8
0
    def _run_interface(self, runtime):

        MNI, MNI_brain, MNI_brain_mask, MNI_voxel_sizes = broccoli.load_MNI_templates(
            self.inputs.MNI_file, self.inputs.MNI_brain_file,
            self.inputs.MNI_brain_mask_file)
        fMRI, fMRI_voxel_sizes = broccoli.load_EPI(self.inputs.fMRI_file,
                                                   only_volume=False)
        T1, T1_voxel_sizes = broccoli.load_T1(self.inputs.T1_file)

        filters_parametric_mat = scipy.io.loadmat(
            self.inputs.filters_parametric)
        filters_nonparametric_mat = scipy.io.loadmat(
            self.inputs.filters_nonparametric)
        filters_parametric = [
            filters_parametric_mat['f%d_parametric_registration' % (i + 1)]
            for i in range(3)
        ]
        filters_nonparametric = [
            filters_nonparametric_mat['f%d_nonparametric_registration' %
                                      (i + 1)] for i in range(6)
        ]
        projection_tensor = [
            filters_nonparametric_mat['m%d' % (i + 1)][0] for i in range(6)
        ]
        filter_directions = [
            filters_nonparametric_mat['filter_directions_%s' % d][0]
            for d in ['x', 'y', 'z']
        ]

        X_GLM = self.load_regressors(fMRI.shape[3])
        xtx = np.linalg.inv(np.dot(X_GLM.T, X_GLM))
        # print(xtx)
        xtxxt_GLM = xtx.dot(X_GLM.T)

        confounds = 1
        if self.inputs.regress_confounds:
            confounds = np.loadtxt(self.inputs.confounds_file)

        contrasts = np.array([[1, 0], [1, 0], [1, 0], [1, 0]])
        ctxtxc_GLM = [
            contrasts[i:i + 1].dot(xtx).dot(contrasts[i:i + 1].T)
            for i in range(len(contrasts))
        ]

        fMRI_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]
        T1_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]
        MNI_voxel_sizes = [int(round(v)) for v in T1_voxel_sizes]

        statistical_maps = broccoli.performFirstLevelAnalysis(
            fMRI,
            fMRI_voxel_sizes,
            T1,
            T1_voxel_sizes,
            MNI,
            MNI_brain,
            MNI_brain_mask,
            MNI_voxel_sizes,
            filters_parametric,
            filters_nonparametric,
            projection_tensor,
            filter_directions,
            self.inputs.iterations_parametric,
            self.inputs.iterations_nonparametric,
            self.inputs.iterations_motion_correction,
            4,
            4,
            0,
            0,
            self.inputs.regress_motion,
            self.inputs.EPI_smoothing,
            self.inputs.AR_smoothing,
            X_GLM,
            xtxxt_GLM.transpose(),
            contrasts,
            ctxtxc_GLM,
            self.inputs.use_temporal_derivatives,
            getattr(broccoli, self.inputs.beta_space),
            confounds,
            self.inputs.regress_confounds,
            self.inputs.opencl_platform,
            self.inputs.opencl_device,
            self.inputs.show_results,
        )

        EPI_nni = nb.load(self.inputs.fMRI_file)
        aligned_EPI_nni = nb.Nifti1Image(statistical_maps, None,
                                         EPI_nni.get_header())
        nb.save(aligned_EPI_nni,
                self._get_output_filename('statistical_map.nii'))

        return runtime