def kuwahara(arr, size=5):
    """
    Kuwahara, a nonlinear 2D smoothing filter.
    http://subsurfwiki.org/wiki/Kuwahara_filter

    Args:
        arr (ndarray): a 2D array, such as a seismic horizon.
        size (int): the kernel size, e.g. 5 for 5x5. Should be odd,
            rounded up if not.

    Returns:
        ndarray: the resulting smoothed array.
    """
    def func(this, s, k):
        """
        Deal with this patch.
        """
        t = this.reshape((s, s))
        sub = np.array([t[:k, :k].flatten(),
                        t[:k, k-1:].flatten(),
                        t[k-1:, :k].flatten(),
                        t[k-1:, k-1:].flatten()]
                      )
        select = sub[np.argmin(np.var(sub, axis=1))]
        return np.mean(select)

    arr = np.array(arr, dtype=np.float)
    if arr.ndim != 2:
        raise BrugesError("arr must have 2-dimensions")

    if not size // 2:
        size += 1

    k = int(np.ceil(size / 2))

    return scipy.ndimage.generic_filter(arr,
                                        func,
                                        size=size,
                                        extra_keywords={'s': size,
                                                        'k': k,
                                                       }
                                       )
Beispiel #2
0
def snn(arr, size=5, include=True):
    """
    Symmetric nearest neighbour, a nonlinear 2D smoothing filter.
    http://subsurfwiki.org/wiki/Symmetric_nearest_neighbour_filter

    Args:
        arr (ndarray): a 2D array, such as a seismic horizon.
        size (int): the kernel size, e.g. 5 for 5x5. Should be odd,
            rounded up if not.
        include (bool): whether to include the central pixel itself.

    Returns:
        ndarray: the resulting smoothed array.
    """
    def func(this, pairs, include):
        """
        Deal with this patch.
        """
        centre = this[this.size // 2]
        select = [nearest(this[p], centre) for p in pairs]
        if include:
            select += [centre]
        return np.mean(select)

    arr = np.array(arr, dtype=np.float)
    if arr.ndim != 2:
        raise BrugesError("arr must have 2-dimensions")

    if not size // 2:
        size += 1

    pairs = [[i, size**2 - 1 - i] for i in range(size**2 // 2)]
    return scipy.ndimage.generic_filter(arr,
                                        func,
                                        size=size,
                                        extra_keywords={
                                            'pairs': pairs,
                                            'include': include
                                        })