Beispiel #1
0
def test_CommitExtractor():
    CommitExtractor([reviewers_num(), author_experience()], [fileref(), url()])
    with pytest.raises(AssertionError):
        CommitExtractor([reviewers_num(), author_experience()],
                        [fileref(), fileref()])
    with pytest.raises(AssertionError):
        CommitExtractor(
            [author_experience(), author_experience()],
            [fileref(), url()])
Beispiel #2
0
    def __init__(self, lemmatization=False):
        IssueModel.__init__(self, lemmatization)

        feature_extractors = [
            issue_features.comment_count(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "issue_extractor",
                issue_features.IssueExtractor(feature_extractors,
                                              cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.0001),
                        "first_comment",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #3
0
    def __init__(self, lemmatization=False):
        BugCoupleModel.__init__(self, lemmatization)

        self.calculate_importance = False

        cleanup_functions = [
            feature_cleanup.responses(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                ("bug_extractor", bug_features.BugExtractor([], cleanup_functions)),
                (
                    "union",
                    ColumnTransformer([("text", self.text_vectorizer(), "text")]),
                ),
            ]
        )

        self.clf = LinearSVCWithLabelEncoding(LinearSVC())
Beispiel #4
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization, commit_data=True)

        self.cross_validation_enabled = False

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({"dev-doc-needed", "dev-doc-complete"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.product(),
            bug_features.component(),
            bug_features.commit_added(),
            bug_features.commit_deleted(),
            bug_features.commit_types(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors,
                        cleanup_functions,
                        rollback=True,
                        rollback_when=self.rollback,
                        commit_data=True,
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(), "title"),
                            ("comments", self.text_vectorizer(), "comments"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #5
0
    def __init__(self, lemmatization=False, interpretable=False):
        CommitModel.__init__(self, lemmatization)

        self.required_dbs.append(BUG_INTRODUCING_COMMITS_DB)

        self.store_dataset = True
        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            commit_features.author_experience(),
            commit_features.reviewer_experience(),
            commit_features.reviewers_num(),
            commit_features.component_touched_prev(),
            commit_features.directory_touched_prev(),
            commit_features.file_touched_prev(),
            commit_features.types(),
            commit_features.files(),
            commit_features.components(),
            commit_features.components_modified_num(),
            commit_features.directories(),
            commit_features.directories_modified_num(),
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.functions_touched_num(),
            commit_features.functions_touched_size(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        column_transformers = [("data", DictVectorizer(), "data")]

        if not interpretable:
            column_transformers.append(
                ("desc", self.text_vectorizer(min_df=0.0001), "desc"))

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors,
                                                cleanup_functions),
            ),
            ("union", ColumnTransformer(column_transformers)),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #6
0
    def __init__(self, lemmatization=False, historical=False):
        BugModel.__init__(self, lemmatization)

        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            # Ignore keywords that would make the ML completely skewed
            # (we are going to use them as 100% rules in the evaluation phase).
            bug_features.keywords(set(KEYWORD_DICT.keys())),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.001),
                        "first_comment",
                    ),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = OneVsRestClassifier(xgboost.XGBClassifier(n_jobs=16))
Beispiel #7
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.product(),
            # TODO: We would like to use the component at the time of filing too,
            # but we can't because the rollback script doesn't support changes to
            # components yet.
            # bug_features.component(),
            bug_features.num_words_title(),
            bug_features.num_words_comments(),
            bug_features.keywords(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors, cleanup_functions, rollback=True
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.0001), "title"),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.0001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #8
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({"dev-doc-needed", "dev-doc-complete"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.commit_added(),
            bug_features.commit_deleted(),
            bug_features.commit_types(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors,
                        cleanup_functions,
                        rollback=True,
                        rollback_when=self.rollback,
                        commit_data=True,
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(), "title"),
                            ("comments", self.text_vectorizer(), "comments"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #9
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.cross_validation_enabled = False
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors, cleanup_functions, rollback=True
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.0001), "title"),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.0001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")

        self.CONFLATED_COMPONENTS_INVERSE_MAPPING = {
            v: k for k, v in self.CONFLATED_COMPONENTS_MAPPING.items()
        }
Beispiel #10
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.cross_validation_enabled = False
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors, cleanup_functions, rollback=True
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.0001), "title"),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.0001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")

        self.CONFLATED_COMPONENTS_INVERSE_MAPPING = {
            v: k for k, v in self.CONFLATED_COMPONENTS_MAPPING.items()
        }
Beispiel #11
0
    def __init__(self, lemmatization: bool = False) -> None:
        CommitModel.__init__(self, lemmatization)

        self.calculate_importance = False

        self.training_dbs += [bugzilla.BUGS_DB]

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            commit_features.reviewers_num(),
            commit_features.types(),
            commit_features.files(),
            commit_features.components(),
            commit_features.components_modified_num(),
            commit_features.directories(),
            commit_features.directories_modified_num(),
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.functions_touched_num(),
            commit_features.functions_touched_size(),
            commit_features.source_code_file_metrics(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors,
                                                cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("desc", self.text_vectorizer(min_df=0.0001), "desc"),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #12
0
    def __init__(self, lemmatization=False):
        CommitModel.__init__(self, lemmatization)

        self.calculate_importance = False

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.file_size(),
            commit_features.test_added(),
            commit_features.added(),
            commit_features.deleted(),
            commit_features.test_deleted(),
            commit_features.author_experience(),
            commit_features.reviewer_experience(),
            commit_features.reviewers_num(),
            commit_features.component_touched_prev(),
            commit_features.directory_touched_prev(),
            commit_features.file_touched_prev(),
            commit_features.types(),
            commit_features.components(),
            commit_features.components_modified_num(),
            commit_features.directories(),
            commit_features.directories_modified_num(),
            commit_features.files(),
            commit_features.files_modified_num(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "commit_extractor",
                    commit_features.CommitExtractor(
                        feature_extractors, cleanup_functions
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("desc", self.text_vectorizer(), "desc"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #13
0
    def __init__(self,
                 training_size=14000,
                 lemmatization=False,
                 cleanup_urls=True):
        self.num_duplicates = training_size // 2
        self.num_nondups_nondups = self.num_dup_nondups = training_size // 4

        BugCoupleModel.__init__(self, lemmatization)

        self.calculate_importance = False

        feature_extractors = [
            bug_features.is_same_product(),
            bug_features.is_same_component(),
            bug_features.is_same_platform(),
            bug_features.is_same_version(),
            bug_features.is_same_os(),
            bug_features.is_same_target_milestone(),
            bug_features.is_first_affected_same(),
            bug_features.couple_common_words_comments(),
            bug_features.couple_delta_creation_date(),
            bug_features.couple_common_keywords(),
            bug_features.couple_common_whiteboard_keywords(),
            bug_features.couple_common_words_summary(),
        ]

        cleanup_functions = [
            feature_cleanup.responses(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        if cleanup_urls:
            cleanup_functions.append(feature_cleanup.url())

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions,
                                          rollback=True),
            ),
            (
                "union",
                ColumnTransformer([
                    ("text", self.text_vectorizer(), "text"),
                    ("couple_data", DictVectorizer(), "couple_data"),
                ]),
            ),
        ])

        self.clf = XGBClassifier(n_jobs=utils.get_physical_cpu_count())
Beispiel #14
0
 def __init__(self, cleanup_urls=True):
     self.cleanup_functions = [
         feature_cleanup.responses(),
         feature_cleanup.hex(),
         feature_cleanup.dll(),
         feature_cleanup.fileref(),
         feature_cleanup.synonyms(),
         feature_cleanup.crash(),
     ]
     if cleanup_urls:
         self.cleanup_functions.append(feature_cleanup.url())
Beispiel #15
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = RandomUnderSampler(random_state=0)
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.product(),
            bug_features.component(),
            bug_features.num_words_title(),
            bug_features.num_words_comments(),
            bug_features.keywords(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors, cleanup_functions, rollback=True
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(), "title"),
                            ("comments", self.text_vectorizer(), "comments"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #16
0
    def __init__(self, lemmatization=False):
        CommitModel.__init__(self, lemmatization)

        self.calculate_importance = False

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.files_modified_num(),
            commit_features.test_added(),
            commit_features.added(),
            commit_features.deleted(),
            commit_features.test_deleted(),
            commit_features.author_experience(),
            commit_features.author_experience_90_days(),
            commit_features.reviewer_experience(),
            commit_features.reviewer_experience_90_days(),
            commit_features.components_touched_prev(),
            commit_features.components_touched_prev_90_days(),
            commit_features.files_touched_prev(),
            commit_features.files_touched_prev_90_days(),
            commit_features.types(),
            commit_features.components(),
            commit_features.number_of_reviewers(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "commit_extractor",
                    commit_features.CommitExtractor(
                        feature_extractors, cleanup_functions
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("desc", self.text_vectorizer(), "desc"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #17
0
    def __init__(self,
                 cleanup_urls=True,
                 nltk_tokenizer=False,
                 confidence_threshold=0.8):
        self.cleanup_functions = [
            feature_cleanup.responses(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]
        if cleanup_urls:
            self.cleanup_functions.append(feature_cleanup.url())

        self.nltk_tokenizer = nltk_tokenizer
        self.confidence_threshold = confidence_threshold
Beispiel #18
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({"stepswanted"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(), "title"),
                    ("comments", self.text_vectorizer(), "comments"),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #19
0
def test_url():
    tests = [
        (
            "This code lies in https://github.com/marco-c/bugbug",
            "This code lies in __URL__",
        ),
        (
            "Another url can be https://hg.mozilla.org/camino/ or https://google.com",
            "Another url can be __CODE_REFERENCE_URL__ or __URL__",
        ),
        (
            "Third example is https://searchfox.org and http://hg.mozilla.org",
            "Third example is __CODE_REFERENCE_URL__ and __CODE_REFERENCE_URL__",
        ),
        (
            "More generic links can be https://github.com/marco-c/bugbug , https://hg.mozilla.org/try/ and https://searchfox.org",
            "More generic links can be __URL__ , __CODE_REFERENCE_URL__ and __CODE_REFERENCE_URL__",
        ),
    ]
    for orig_text, cleaned_text in tests:
        assert feature_cleanup.url()(orig_text) == cleaned_text
Beispiel #20
0
    def __init__(self,
                 training_size=14000,
                 lemmatization=False,
                 cleanup_urls=True):
        self.num_duplicates = training_size // 2
        self.num_nondups_nondups = self.num_dup_nondups = training_size // 4

        BugCoupleModel.__init__(self, lemmatization)

        self.calculate_importance = False

        feature_extractors = [bug_features.is_same_product()]

        cleanup_functions = [
            feature_cleanup.responses(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        if cleanup_urls:
            cleanup_functions.append(feature_cleanup.url())

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([("text", self.text_vectorizer(), "text")]),
            ),
        ])

        self.clf = LinearSVCWithLabelEncoding(LinearSVC())
Beispiel #21
0
    def __init__(self, lemmatization=False):
        IssueModel.__init__(self,
                            owner="webcompat",
                            repo="web-bugs",
                            lemmatization=lemmatization)

        self.calculate_importance = False

        feature_extractors = []

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "issue_extractor",
                issue_features.IssueExtractor(feature_extractors,
                                              cleanup_functions,
                                              rollback=True),
            ),
            (
                "union",
                ColumnTransformer([
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.0001),
                        "first_comment",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #22
0
    def __init__(
        self,
        cleanup_urls=True,
        nltk_tokenizer=False,
        confidence_threshold=0.8,
        end_to_end=False,
    ):
        self.cleanup_functions = [
            feature_cleanup.responses(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]
        if cleanup_urls:
            self.cleanup_functions.append(feature_cleanup.url())

        self.nltk_tokenizer = nltk_tokenizer
        self.confidence_threshold = confidence_threshold

        self.duplicatemodel = (DuplicateModel.load("duplicatemodel")
                               if end_to_end else None)
Beispiel #23
0
    def __init__(self,
                 lemmatization=False,
                 historical=False,
                 rca_subcategories_enabled=False):
        BugModel.__init__(self, lemmatization)

        self.calculate_importance = False
        self.rca_subcategories_enabled = rca_subcategories_enabled

        # should we consider only the main category or all sub categories
        self.RCA_TYPES = (RCA_SUBCATEGORIES + RCA_CATEGORIES
                          if rca_subcategories_enabled else RCA_CATEGORIES)

        self.RCA_LIST = sorted(set(self.RCA_TYPES))

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            # Ignore whiteboards that would make the ML completely skewed
            # bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.001),
                        "first_comment",
                    ),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = OneVsRestClassifier(xgboost.XGBClassifier(n_jobs=16))
Beispiel #24
0
    def __init__(self, lemmatization=False, historical=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            # Ignore keywords that would make the ML completely skewed
            # (we are going to use them as 100% rules in the evaluation phase).
            bug_features.keywords(set(keyword_dict.keys())),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(feature_extractors, cleanup_functions),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.001), "title"),
                            (
                                "first_comment",
                                self.text_vectorizer(min_df=0.001),
                                "first_comment",
                            ),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = OneVsRestClassifier(xgboost.XGBClassifier(n_jobs=16))
Beispiel #25
0
    def __init__(self, lemmatization=False, bug_data=False):
        CommitModel.__init__(self, lemmatization, bug_data)

        self.calculate_importance = False

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            commit_features.author_experience(),
            commit_features.reviewer_experience(),
            commit_features.reviewers_num(),
            commit_features.component_touched_prev(),
            commit_features.directory_touched_prev(),
            commit_features.file_touched_prev(),
            commit_features.types(),
            commit_features.components(),
            commit_features.directories(),
            commit_features.files(),
        ]

        if bug_data:
            feature_extractors += [
                bug_features.product(),
                bug_features.component(),
                bug_features.severity(),
                bug_features.priority(),
                bug_features.has_crash_signature(),
                bug_features.has_regression_range(),
                bug_features.whiteboard(),
                bug_features.keywords(),
                bug_features.number_of_bug_dependencies(),
                bug_features.blocked_bugs_number(),
            ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "commit_extractor",
                    commit_features.CommitExtractor(
                        feature_extractors, cleanup_functions
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("desc", self.text_vectorizer(), "desc"),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #26
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.calculate_importance = False

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(
                    feature_extractors,
                    cleanup_functions,
                    rollback=True,
                    rollback_when=self.rollback,
                ),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.0001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #27
0
def test_BugExtractor():
    BugExtractor([has_str(), has_url()], [fileref(), url()])
    with pytest.raises(AssertionError):
        BugExtractor([has_str(), has_str()], [fileref(), url()])
    with pytest.raises(AssertionError):
        BugExtractor([has_str(), has_url()], [fileref(), fileref()])
Beispiel #28
0
    def __init__(self, lemmatization=False, historical=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            # Ignore keywords that would make the ML completely skewed
            # (we are going to use them as 100% rules in the evaluation phase).
            bug_features.keywords(
                {"regression", "talos-regression", "feature"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        if historical:
            feature_extractors.append(bug_features.had_severity_enhancement())

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.001),
                        "first_comment",
                    ),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #29
0
    from nltk.stem.porter import PorterStemmer
except ImportError:
    raise ImportError(OPT_MSG_MISSING)

nltk.download("stopwords")

REPORTERS_TO_IGNORE = {
    "*****@*****.**", "*****@*****.**"
}

cleanup_functions = [
    feature_cleanup.responses(),
    feature_cleanup.hex(),
    feature_cleanup.dll(),
    feature_cleanup.fileref(),
    feature_cleanup.url(),
    feature_cleanup.synonyms(),
    feature_cleanup.crash(),
]

# A map from bug ID to its duplicate IDs
duplicates = defaultdict(set)
all_ids = set(bug["id"] for bug in bugzilla.get_bugs()
              if bug["creator"] not in REPORTERS_TO_IGNORE
              and "dupeme" not in bug["keywords"])

for bug in bugzilla.get_bugs():
    dupes = [entry for entry in bug["duplicates"] if entry in all_ids]
    if bug["dupe_of"] in all_ids:
        dupes.append(bug["dupe_of"])
Beispiel #30
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors,
                        cleanup_functions,
                        rollback=True,
                        rollback_when=self.rollback,
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.0001), "title"),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.0001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Beispiel #31
0
    def __init__(
        self,
        lemmatization: bool = False,
        interpretable: bool = True,
        use_finder: bool = False,
        exclude_finder: bool = True,
        finder_regressions_only: bool = False,
    ) -> None:
        CommitModel.__init__(self, lemmatization)

        self.training_dbs += [BUG_INTRODUCING_COMMITS_DB, bugzilla.BUGS_DB]
        if finder_regressions_only:
            self.training_dbs.append(BUG_FIXING_COMMITS_DB)

        self.store_dataset = True
        self.sampler = RandomUnderSampler(random_state=0)

        self.use_finder = use_finder
        self.exclude_finder = exclude_finder
        assert (
            use_finder ^ exclude_finder
        ), "Using both use_finder and exclude_finder option does not make a lot of sense"
        self.finder_regressions_only = finder_regressions_only

        feature_extractors = [
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            commit_features.author_experience(),
            commit_features.reviewer_experience(),
            commit_features.reviewers_num(),
            commit_features.component_touched_prev(),
            commit_features.directory_touched_prev(),
            commit_features.file_touched_prev(),
            commit_features.types(),
            commit_features.files(),
            commit_features.components(),
            commit_features.components_modified_num(),
            commit_features.directories(),
            commit_features.directories_modified_num(),
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.functions_touched_num(),
            commit_features.functions_touched_size(),
            commit_features.source_code_file_metrics(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        column_transformers = [("data", DictVectorizer(), "data")]

        if not interpretable:
            column_transformers.append(
                ("desc", self.text_vectorizer(min_df=0.0001), "desc")
            )

        self.extraction_pipeline = Pipeline(
            [
                (
                    "commit_extractor",
                    commit_features.CommitExtractor(
                        feature_extractors, cleanup_functions
                    ),
                ),
                ("union", ColumnTransformer(column_transformers)),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")