Beispiel #1
0
def qLearning(world, userMap, maxX, maxY, discount=0.9, MAX_ITERATIONS=1000):
    gen = BasicGridWorld(userMap, maxX, maxY)
    domain = gen.generateDomain()
    initialState = gen.getExampleState(domain);

    rf = BasicRewardFunction(maxX, maxY, userMap)
    tf = BasicTerminalFunction(maxX, maxY)
    env = SimulatedEnvironment(domain, rf, tf, initialState)
    visualizeInitialGridWorld(domain, gen, env)

    hashingFactory = SimpleHashableStateFactory()
    timing = defaultdict(list)
    rewards = defaultdict(list)
    steps = defaultdict(list)
    convergence = defaultdict(list)

    allStates = getAllStates(domain, rf, tf, initialState)

    MAX_ITERATIONS = MAX_ITERATIONS
    NUM_INTERVALS = MAX_ITERATIONS;
    iterations = range(1, MAX_ITERATIONS + 1)
    qInit = 0
    for lr in [0.01, 0.1, 0.5]:
        for epsilon in [0.3, 0.5, 0.7]:
            last10Chg = deque([10] * 10, maxlen=10)
            Qname = 'Q-Learning L{:0.2f} E{:0.1f}'.format(lr, epsilon)
            #agent = QLearning(domain, discount, hashingFactory, qInit, lr, epsilon, 300)
            agent = QLearning(domain, discount, hashingFactory, qInit, lr, epsilon)
            agent.setDebugCode(0)

            print("*** {}: {}".format(world, Qname))

            for nIter in iterations:
                if nIter % 200 == 0: 
                    print('Iteration: {}'.format(nIter))

                startTime = clock()
                #ea = agent.runLearningEpisode(env, 300)
                ea = agent.runLearningEpisode(env)
                env.resetEnvironment()
                agent.initializeForPlanning(rf, tf, 1)
                p = agent.planFromState(initialState)  # run planning from our initial state
                endTime = clock()
                timing[Qname].append((endTime-startTime)*1000)

                last10Chg.append(agent.maxQChangeInLastEpisode)
                convergence[Qname].append(sum(last10Chg)/10.)
                # evaluate the policy with one roll out visualize the trajectory
                runEvals(initialState, p, rewards[Qname], steps[Qname], rf, tf, evalTrials=1)
                if nIter % 1000 == 0:
                    dumpPolicyMap(MapPrinter.printPolicyMap(allStates, p, gen.getMap()),
                                  '{} {} Iter {} Policy Map.pkl'.format(world, Qname, nIter))
                    simpleValueFunctionVis(agent, p, initialState, domain, hashingFactory, Qname)
                
            dumpCSV(nIter, timing[Qname], rewards[Qname], steps[Qname], convergence[Qname], world, Qname) 
Beispiel #2
0
def pIteration(world, userMap, maxX, maxY, discount=0.99, MAX_ITERATIONS=100):
    gen = BasicGridWorld(userMap, maxX, maxY)
    domain = gen.generateDomain()
    initialState = gen.getExampleState(domain);

    rf = BasicRewardFunction(maxX, maxY, userMap)
    tf = BasicTerminalFunction(maxX, maxY)
    env = SimulatedEnvironment(domain, rf, tf, initialState)
    visualizeInitialGridWorld(domain, gen, env)

    hashingFactory = SimpleHashableStateFactory()
    timing = defaultdict(list)
    rewards = defaultdict(list)
    steps = defaultdict(list)
    convergence = defaultdict(list)
    policy_converged = defaultdict(list)    
    last_policy = defaultdict(list)

    allStates = getAllStates(domain, rf, tf, initialState)

    print("*** {} Policy Iteration Analysis".format(world))

    MAX_ITERATIONS = MAX_ITERATIONS
    iterations = range(1, MAX_ITERATIONS + 1)
    pi = PolicyIteration(domain,rf,tf,discount,hashingFactory,-1,1,1); 
    pi.setDebugCode(0)
    for nIter in iterations:
        startTime = clock()
        #pi = PolicyIteration(domain,rf,tf,discount,hashingFactory,-1,1, nIter); 
        #pi.setDebugCode(0)
        # run planning from our initial state
        p = pi.planFromState(initialState);
        endTime = clock()
        timing['Policy'].append((endTime-startTime)*1000)

        convergence['Policy'].append(pi.lastPIDelta)         
        # evaluate the policy with one roll out visualize the trajectory
        runEvals(initialState, p, rewards['Policy'], steps['Policy'], rf, tf, evalTrials=1)
        if nIter == 1 or nIter == 50:
            simpleValueFunctionVis(pi, p, initialState, domain, hashingFactory, "Policy Iteration{}".format(nIter))
 
        policy = pi.getComputedPolicy()
        allStates = pi.getAllStates()
        current_policy = [[(action.ga, action.pSelection) 
            for action in policy.getActionDistributionForState(state)] 
            for state in allStates]
        policy_converged['Policy'].append(current_policy == last_policy)
        last_policy = current_policy
 
    simpleValueFunctionVis(pi, p, initialState, domain, hashingFactory, "Policy Iteration{}".format(nIter))
    dumpPolicyMap(MapPrinter.printPolicyMap(allStates, p, gen.getMap()),
            world + ' Policy Iteration Policy Map.pkl')
    dumpCSVp(iterations, timing['Policy'], rewards['Policy'], steps['Policy'],convergence['Policy'], 
            world, 'Policy', policy_converged['Policy'])
Beispiel #3
0
def vIteration(world, userMap, maxX, maxY, discount=0.99, MAX_ITERATIONS=100):
    gen = BasicGridWorld(userMap, maxX, maxY)
    domain = gen.generateDomain()
    initialState = gen.getExampleState(domain);

    rf = BasicRewardFunction(maxX, maxY, userMap)
    tf = BasicTerminalFunction(maxX, maxY)
    env = SimulatedEnvironment(domain, rf, tf, initialState)
    visualizeInitialGridWorld(domain, gen, env)

    hashingFactory = SimpleHashableStateFactory()
    timing = defaultdict(list)
    rewards = defaultdict(list)
    steps = defaultdict(list)
    convergence = defaultdict(list)

    allStates = getAllStates(domain, rf, tf, initialState)

    print("*** {} Value Iteration Analysis".format(world))

    MAX_ITERATIONS = MAX_ITERATIONS
    iterations = range(1, MAX_ITERATIONS + 1)
    vi = ValueIteration(domain, rf, tf, discount, hashingFactory, -1, 1);
    vi.setDebugCode(0)
    vi.performReachabilityFrom(initialState)
    vi.toggleUseCachedTransitionDynamics(False)
    timing['Value'].append(0)
    for nIter in iterations:
        startTime = clock()
        vi.runVI()
        p = vi.planFromState(initialState);
        endTime = clock()
        timing['Value'].append((endTime-startTime)*1000)

        convergence['Value'].append(vi.latestDelta)
        # evaluate the policy with evalTrials roll outs
        runEvals(initialState, p, rewards['Value'], steps['Value'], rf, tf, evalTrials=1)
        if nIter == 1 or nIter == 50:
            simpleValueFunctionVis(vi, p, initialState, domain, hashingFactory, "Value Iteration {}".format(nIter))

    simpleValueFunctionVis(vi, p, initialState, domain, hashingFactory, "Value Iteration {}".format(nIter))
    dumpPolicyMap(MapPrinter.printPolicyMap(allStates, p, gen.getMap()),
            world + ' Value Iteration Policy Map.pkl')
    dumpCSV(nIter, timing['Value'][1:], rewards['Value'], steps['Value'], convergence['Value'], world, 'Value')
    rf = BasicRewardFunction(maxX, maxY, userMap)
    tf = BasicTerminalFunction(maxX, maxY)
    env = SimulatedEnvironment(domain, rf, tf, initialState)
    #    Print the map that is being analyzed
    print "/////{} Grid World Analysis/////\n".format(world)
    MapPrinter().printMap(MapPrinter.matrixToMap(userMap))
    visualizeInitialGridWorld(domain, gen, env)

    hashingFactory = SimpleHashableStateFactory()
    increment = MAX_ITERATIONS / NUM_INTERVALS
    timing = defaultdict(list)
    rewards = defaultdict(list)
    steps = defaultdict(list)
    convergence = defaultdict(list)
    allStates = getAllStates(domain, rf, tf, initialState)
    # Value Iteration
    iterations = range(1, MAX_ITERATIONS + 1)
    vi = ValueIteration(domain, rf, tf, discount, hashingFactory, -1, 1)
    vi.setDebugCode(0)
    vi.performReachabilityFrom(initialState)
    vi.toggleUseCachedTransitionDynamics(False)
    print "//{} Value Iteration Analysis//".format(world)
    flag = True
    timing['Value'].append(0)
    for nIter in iterations:
        startTime = clock()
        vi.runVI()
        #timing['Value'].append((clock()-startTime) * 1000)
        timing['Value'].append(timing['Value'][-1] + clock() - startTime)
        p = vi.planFromState(initialState)
    #    Print the map that is being analyzed
    print "/////Easy Grid World Analysis/////\n"
    MapPrinter().printMap(MapPrinter.matrixToMap(userMap))

    # Create picture of grid world
    visualizeInitialGridWorld(domain, gen, env)

    hashingFactory = SimpleHashableStateFactory()
    increment = MAX_ITERATIONS / NUM_INTERVALS
    timing = defaultdict(list)
    rewards = defaultdict(list)
    steps = defaultdict(list)
    convergence = defaultdict(list)
    policy_converged = defaultdict(list)
    last_policy = defaultdict(list)
    allStates = getAllStates(domain, rf, tf, initialState)

    # This sections runs Value Iteration
    # iterations = range(1, MAX_ITERATIONS + 1)

    # print "//Easy Value Iteration Analysis//"
    # for nIter in iterations:
    #     startTime = clock()
    #     vi = ValueIteration(domain, rf, tf, discount, hashingFactory, -1,
    #                         nIter);  # //Added a very high delta number in order to guarantee that value iteration occurs the max number of iterations for comparison with the other algorithms.
    #     # run planning from our initial state
    #     vi.setDebugCode(0)
    #     p = vi.planFromState(initialState);
    #     timing['Value'].append((clock() - startTime) * 1000)
    #     convergence['Value'].append(vi.latestDelta)
    #     # evaluate the policy with evalTrials roll outs
Beispiel #6
0
    for nIter in iterations:
        startTime = clock()
        if nIter % 50 == 0:
            print nIter
        ea = agent.runLearningEpisode(env)
        env.resetEnvironment()
        agent.initializeForPlanning(rf, tf, 1)
        p = agent.planFromState(
            initialState)  # run planning from our initial state
        timing[Qname].append((clock() - startTime) * 1000)
        last10Rewards.append(agent.maxQChangeInLastEpisode)
        convergence[Qname].append(sum(last10Rewards) / 10.)
        # evaluate the policy with one roll out visualize the trajectory
        runEvals(initialState, p, rewards[Qname], steps[Qname])
        # if (nIter == 1):
        #     simpleValueFunctionVis(agent, p, initialState, domain, hashingFactory, Qname+' {}'.format(nIter))
        # if (nIter == 100):
        #     simpleValueFunctionVis(agent, p, initialState, domain, hashingFactory, Qname+' {}'.format(nIter))
        # if (nIter == 1000):
        #     simpleValueFunctionVis(agent, p, initialState, domain, hashingFactory, Qname+' {}'.format(nIter))
        #MapPrinter.printPolicyMap(getAllStates(domain,rf,tf,initialState), p, gen.getMap());

    MapPrinter.printPolicyMap(getAllStates(domain, rf, tf, initialState), p,
                              gen.getMap())
    print "\n\n"
    simpleValueFunctionVis(agent, p, initialState, domain, hashingFactory,
                           Qname + ' {}'.format(nIter))
    dumpCSV(iterations, timing[Qname], rewards[Qname], steps[Qname],
            convergence[Qname], world, Qname)
print "HardGW done"