Beispiel #1
0
def test_tasks() -> None:
    """Task creation is tested separately in the absence of Von Neumann eqn"""
    model = Model()
    model.read_config("test/test_model_spam.cfg")
    pmap = ParameterMap(model=model, generator=gen)
    pmap.read_config("test/instructions.cfg")
    assert list(model.tasks.keys()) == ["init_ground", "conf_matrix", "meas_rescale"]
Beispiel #2
0
def test_calibration_cmaes() -> None:
    """Create a C2 style Optimizer object and run calibration
    with a mock_ORBIT function. Check if the goal in the optimizer
    correctly reflects the constant goal returned by the mock_ORBIT.
    """
    with open(OPT_CONFIG_FILE_NAME, "r") as cfg_file:
        cfg = hjson.load(cfg_file)

    pmap = ParameterMap()
    pmap.read_config(cfg.pop("instructions"))
    pmap.set_opt_map(
        [[tuple(par) for par in pset] for pset in cfg.pop("gateset_opt_map")]
    )

    exp = Experiment(pmap=pmap)

    algo_options = cfg.pop("options")
    run_name = cfg.pop("run_name")

    opt = Calibration(
        dir_path=LOGDIR,
        run_name=run_name,
        eval_func=mock_ORBIT,
        pmap=pmap,
        exp_right=exp,
        algorithm=algorithms.cmaes,
        options=algo_options,
    )

    opt.run()
    assert opt.current_best_goal == RESULT_VAL
Beispiel #3
0
import pytest
from c3.c3objs import Quantity
from c3.libraries.envelopes import envelopes
from c3.signal.gates import Instruction
from c3.signal.pulse import Envelope, Carrier
from c3.model import Model
from c3.generator.generator import Generator
from c3.parametermap import ParameterMap
from c3.experiment import Experiment as Exp

model = Model()
model.read_config("test/test_model.cfg")
gen = Generator()
gen.read_config("test/generator.cfg")
pmap = ParameterMap(model=model, generator=gen)
pmap.read_config("test/instructions.cfg")


@pytest.mark.unit
def test_name_collision() -> None:
    broken_model = Model()
    with pytest.raises(KeyError):
        broken_model.read_config("test/test_model_breaking.cfg")


@pytest.mark.unit
def test_subsystems() -> None:
    assert list(model.subsystems.keys()) == ["Q1", "Q2", "Q3", "Q4", "Q5", "Q6"]


@pytest.mark.unit
Beispiel #4
0
def run_cfg(cfg, opt_config_filename, debug=False):
    """Execute an optimization problem described in the cfg file.

    Parameters
    ----------
    cfg : Dict[str, Union[str, int, float]]
        Configuration file containing optimization options and information needed to completely
        setup the system and optimization problem.
    debug : bool, optional
        Skip running the actual optimization, by default False
    """
    optim_type = cfg.pop("optim_type")
    optim_lib = {
        "C1": OptimalControl,
        "C2": Calibration,
        "C3": ModelLearning,
        "C3_confirm": ModelLearning,
        "confirm": ModelLearning,
        "SET": Sensitivity,
    }
    if not optim_type in optim_lib:
        raise Exception("C3:ERROR:Unknown optimization type specified.")

    tf_utils.tf_setup()
    with tf.device("/CPU:0"):
        model = None
        gen = None
        exp = None
        prop_meth = cfg.pop("propagation_method", None)
        if "model" in cfg:
            model = Model()
            model.read_config(cfg.pop("model"))
        if "generator" in cfg:
            gen = Generator()
            gen.read_config(cfg.pop("generator"))
        if "instructions" in cfg:
            pmap = ParameterMap(model=model, generator=gen)
            pmap.read_config(cfg.pop("instructions"))
            exp = Experiment(pmap, prop_method=prop_meth)
        if "exp_cfg" in cfg:
            exp = Experiment(prop_method=prop_meth)
            exp.read_config(cfg.pop("exp_cfg"))
        if exp is None:
            print(
                "C3:STATUS: No instructions specified. Performing quick setup."
            )
            exp = Experiment(prop_method=prop_meth)
            exp.quick_setup(cfg)

        exp.set_opt_gates(cfg.pop("opt_gates", None))
        if "gateset_opt_map" in cfg:
            exp.pmap.set_opt_map([[tuple(par) for par in pset]
                                  for pset in cfg.pop("gateset_opt_map")])
        if "exp_opt_map" in cfg:
            exp.pmap.set_opt_map([[tuple(par) for par in pset]
                                  for pset in cfg.pop("exp_opt_map")])

        opt = optim_lib[optim_type](**cfg, pmap=exp.pmap)
        opt.set_exp(exp)
        opt.set_created_by(opt_config_filename)

        if "initial_point" in cfg:
            initial_points = cfg["initial_point"]
            if isinstance(initial_points, str):
                initial_points = [initial_points]
            elif isinstance(initial_points, list):
                pass
            else:
                raise Warning(
                    "initial_point has to be a path or a list of paths.")
            for init_point in initial_points:
                try:
                    opt.load_best(init_point)
                    print("C3:STATUS:Loading initial point from : "
                          f"{os.path.abspath(init_point)}")
                except FileNotFoundError as fnfe:
                    raise Exception(
                        f"C3:ERROR:No initial point found at "
                        f"{os.path.abspath(init_point)}. ") from fnfe

        if optim_type == "C1":
            if "adjust_exp" in cfg:
                try:
                    adjust_exp = cfg["adjust_exp"]
                    opt.load_model_parameters(adjust_exp)
                    print("C3:STATUS:Loading experimental values from : "
                          f"{os.path.abspath(adjust_exp)}")
                except FileNotFoundError as fnfe:
                    raise Exception(
                        f"C3:ERROR:No experimental values found at "
                        f"{os.path.abspath(adjust_exp)} "
                        "Continuing with default.") from fnfe

        if not debug:
            opt.run()
Beispiel #5
0
    optim_type = cfg["optim_type"]

    tf_utils.tf_setup()
    with tf.device("/CPU:0"):
        model = None
        gen = None
        if "model" in cfg:
            model = Model()
            model.read_config(cfg["model"])
        if "generator" in cfg:
            gen = Generator()
            gen.read_config(cfg["generator"])
        if "instructions" in cfg:
            pmap = ParameterMap(model=model, generator=gen)
            pmap.read_config(cfg["instructions"])
            exp = Experiment(pmap)
        else:
            print(
                "C3:STATUS: No instructions specified. Performing quick setup."
            )
            exp = Experiment()
            exp.quick_setup(opt_config)

        if optim_type == "C1":
            opt = parsers.create_c1_opt(opt_config, exp)
            if cfg["include_model"]:
                opt.include_model()
        elif optim_type == "C2":
            eval_func = cfg["eval_func"]
            opt = parsers.create_c2_opt(opt_config, eval_func)