Beispiel #1
0
class CaffeServer(object):
    def __init__(self, caffe_root, feature_layers, gpu):
        self.extractor = CaffeExtractor(caffe_root=caffe_root, feature_layers=feature_layers, gpu=gpu)

    def getImageFeatures(self, image , image_shape):
        image = np.fromstring(snappy.uncompress(image), dtype=np.float32)
        image.resize(image_shape)
        feature_dic = self.extractor.getImageFeatures(image)
        feature_dic = {layer:snappy.compress(features) for layer,features in feature_dic.items()}
        return feature_dic

    def getImageLabels(self):
        labels = self.extractor.getImageLabels()
        return labels
Beispiel #2
0
def model_mobileface2(do_mirror):
    model_dir = './models/mobilefacenet/'
    model_proto = model_dir + 'model.prototxt'
    model_path = model_dir + 'model.caffemodel'
    image_size = (112, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc1')
    return extractor, image_size
Beispiel #3
0
def model_mobileface(do_mirror):
    model_dir = './models/mobilefacenet/'
    model_proto = model_dir + 'mobilefacenet-res2-6-10-2-dim128-opencv.prototxt'
    model_path = model_dir + 'mobilefacenet-res2-6-10-2-dim128.caffemodel'
    image_size = (112, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc1')
    return extractor, image_size
Beispiel #4
0
def model_arcface(do_mirror):
    model_dir = './models/arcface/'
    model_proto = model_dir + 'model.prototxt'
    model_path = model_dir + 'model-r50-am.caffemodel'
    image_size = (112, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc1')
    return extractor, image_size
Beispiel #5
0
def model_sphereface(do_mirror):
    model_dir = './models/sphereface/'
    model_proto = model_dir + 'sphereface_deploy.prototxt'
    model_path = model_dir + 'sphereface_model.caffemodel'
    image_size = (96, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc5')
    return extractor, image_size
Beispiel #6
0
def test_model(model,
               weight,
               dist_type='cosine',
               do_mirror=False,
               feat_layer='fc5'):
    extractor = CaffeExtractor(model,
                               weight,
                               do_mirror=do_mirror,
                               featLayer=feat_layer)
    test_loss(extractor, weight, dist_type)
Beispiel #7
0
def model_yours(do_mirror):
    model_dir = '/path/to/your/model/'
    model_proto = model_dir + 'deploy.prototxt'
    model_path = model_dir + 'weights.caffemodel'
    image_size = (112, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc5')
    return extractor, image_size
Beispiel #8
0
def model_tzk(do_mirror):
    model_dir = '/home/ysten/tzk/fr/insightface/caffe/AMSoftmax/'
    model_proto = model_dir + 'deploy.prototxt'
    model_path = model_dir + 'tune_iter_20000.caffemodel'
    image_size = (112, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=do_mirror,
                               featLayer='fc5')
    return extractor, image_size
Beispiel #9
0
def model_AMSoftmax(do_mirror):
    model_dir = './models/AMSoftmax/'
    if do_mirror:
        model_proto = model_dir + 'face_deploy_mirror_normalize.prototxt'
    else:
        model_proto = model_dir + 'deploy.prototxt'
    model_path = model_dir + 'face_train_test_iter_30000.caffemodel'
    image_size = (96, 112)
    extractor = CaffeExtractor(model_proto,
                               model_path,
                               do_mirror=False,
                               featLayer='fc5')
    return extractor, image_size
Beispiel #10
0
 def __init__(self, caffe_root, feature_layers, gpu):
     self.extractor = CaffeExtractor(caffe_root=caffe_root, feature_layers=feature_layers, gpu=gpu)
Beispiel #11
0
    # load model
    feat_layer = 'fc5'
    if config.get('model').feat_layer:
        featLayer = config.get('model').feat_layer
    if config.get(model_name).feat_layer != None:
        feat_layer = config.get(model_name).feat_layer

    model = config.get(model_name).model
    weights = config.get(model_name).weights
    suffix = config.get(model_name).suffix

    print('Test model:%s feat:%s suffix:%s' % (model_name, feat_layer, suffix))

    extractor = CaffeExtractor(model,
                               weights,
                               featLayer=feat_layer,
                               gpu_id=config.get('model').gpu_id)

    # devkit/templatelists
    templatelists_dir = config.get('devkit').templatelists_dir

    # Extract facescrub features
    facescrub_dir = config.get('facescrub').aligned_dir
    facescrub_feature_dir = config.get('facescrub').feature_dir
    extract_facescrub_uncropped(facescrub_dir, templatelists_dir,
                                facescrub_feature_dir, suffix, extractor)

    # Extract MegaFace features
    mega_dir = config.get('megaface').aligned_dir
    mega_feature_dir = config.get('megaface').feature_dir
    extract_megaface_features(mega_dir, templatelists_dir, mega_feature_dir,
Beispiel #12
0
def test_model(model, weight, dist_type='cosine', do_mirror=False):
    extractor = CaffeExtractor(model, weight, do_mirror=do_mirror)
    test_loss(extractor, weight, dist_type)