def run_correlation(bubble, yso, outfile, binStep=0.2): """Cross correlate and write to file Parameters ---------- bubble : astropy Table yso : astropy Table outfile : str """ theta, corr, err = calc_corr(bubble, yso, corrType='x', rSize=50, nbStrap=100, binStep=binStep) t = Table([theta, corr, err], names=['theta', 'w', 'dw']) t.write(outfile, format='ascii', delimiter=',')
# do counts for the different source types: types=np.unique(yso['type']) counts=np.zeros((len(types),3)) for i in range(0,len(types)): counts[i,0] = np.size(yso[yso['type'] == types[i]]) # the divSample function is kind of independent but I've included it in the calc_corr file. dr1_assoc, dr1_assoc2, dr1_control = calc_corr.divSample(yso, dr1) #sample correlation calls, with optional data file output of the results: # all MWP bubbles and RMS sources: mwprms_theta, mwprms_corr, mwprms_err = calc_corr.calc_corr(dr1, yso, corrType='x', rSize=50, nbStrap=100, binStep=0.2) x=writeData(mwprms_theta, mwprms_corr, mwprms_err, outFile='mwprms_all.dat', bubCat='dr1', ysoCat='rms', rSize=50, nbStrap=100 ) # just the large bubbles and RMS sources: mwpLrms_theta, mwpLrms_corr, mwpLrms_err = calc_corr.calc_corr(dr1L, yso, corrType='x', rSize=50, nbStrap=100, binStep=0.2) y=writeData(mwpLrms_theta, mwpLrms_corr, mwpLrms_err, outFile='mwpLrms.dat', bubCat='dr1L', ysoCat='rms', rSize=50, nbStrap=100 ) # RMS YSOs auto-correlations: ysodr1_theta, ysodr1_acorr, ysodr1_err = calc_corr.calc_corr(dr1, yso, corrType='a', rSize=50, nbStrap=100, binStep=0.5) z=writeData(ysodr1_theta, ysodr1_acorr, ysodr1_err, outFile='mwpyso_acorr_all.dat', bubCat='dr1', ysoCat='rms all', rSize=50, nbStrap=100 ) # Sample correlation function plot: mwpFig = plt.figure() plt.errorbar(mwprms_theta, mwprms_corr, yerr=mwprms_err, c='k', marker='o', ls='None', mew=1.5, mec='k', mfc='None', label='MWP all + RMS YSOs') plt.errorbar(mwpLrms_theta, mwpLrms_corr, yerr=mwpLrms_err, c='r', marker='x', ls='None', mew=1.5, mec='r', mfc='None', label='MWP-L + RMS YSOs')
# do counts for the different source types: types=np.unique(yso['type']) counts=np.zeros((len(types),3)) for i in range(0,len(types)): counts[i,0] = np.size(yso[yso['type'] == types[i]]) # the divSample function is kind of independent but I've included it in the calc_corr file. dr1_assoc, dr1_assoc2, dr1_control = calc_corr.divSample(yso, dr1) #sample correlation calls, with optional data file output of the results: # all MWP bubbles and RMS sources: mwprms_theta, mwprms_corr, mwprms_err = calc_corr.calc_corr(dr1, yso, corrType='x', rSize=10, nbStrap=10, binStep=0.2) #x=writeData(mwprms_theta, mwprms_corr, mwprms_err, outFile='mwprms_all.dat', bubCat='dr1', ysoCat='rms', rSize=50, nbStrap=100 ) # just the large bubbles and RMS sources: #mwpLrms_theta, mwpLrms_corr, mwpLrms_err = calc_corr.calc_corr(dr1L, yso, corrType='x', rSize=50, nbStrap=100, binStep=0.2) #y=writeData(mwpLrms_theta, mwpLrms_corr, mwpLrms_err, outFile='mwpLrms.dat', bubCat='dr1L', ysoCat='rms', rSize=50, nbStrap=100 ) # RMS YSOs auto-correlations: #ysodr1_theta, ysodr1_acorr, ysodr1_err = calc_corr.calc_corr(dr1, yso, corrType='a', rSize=50, nbStrap=100, binStep=0.5) #z=writeData(ysodr1_theta, ysodr1_acorr, ysodr1_err, outFile='mwpyso_acorr_all.dat', bubCat='dr1', ysoCat='rms all', rSize=50, nbStrap=100 ) # Sample correlation function plot: mwpFig = plt.figure() plt.errorbar(mwprms_theta, mwprms_corr, yerr=mwprms_err, c='k', marker='o', ls='None', mew=1.5, mec='k', mfc='None', label='MWP all + RMS YSOs')
# Add any additional clipping criteria here: # do counts for the different source types: types = np.unique(yso['type']) counts = np.zeros((len(types), 3)) for i in range(0, len(types)): counts[i, 0] = np.size(yso[yso['type'] == types[i]]) # the divSample function is kind of independent but I've included it in the calc_corr file. dr1_assoc, dr1_assoc2, dr1_control = calc_corr.divSample(yso, dr1) #sample correlation calls, with optional data file output of the results: # all MWP bubbles and RMS sources: mwprms_theta, mwprms_corr, mwprms_err = calc_corr.calc_corr(dr1, yso, corrType='x', rSize=50, nbStrap=100, binStep=0.2) x = writeData(mwprms_theta, mwprms_corr, mwprms_err, outFile='mwprms_all.dat', bubCat='dr1', ysoCat='rms', rSize=50, nbStrap=100) # just the large bubbles and RMS sources: mwpLrms_theta, mwpLrms_corr, mwpLrms_err = calc_corr.calc_corr(dr1L, yso, corrType='x',