Beispiel #1
0
def main_data(start, end, **kwargs):
    span = kwargs["span"]
    region = kwargs["region"]
    get_columns = kwargs["get_columns"]
    accumulate = kwargs["accumulate"]

    date_ax, date_ax_str = get_date_ax(start, end)
    N = len(date_ax_str)
    skipping_date_str = []
    accumulate_data = []
    data = []
    for i, day in enumerate(date_ax_str):
        print("{}/{}: {}".format(i + 1, N, day))
        print("start: {}, end: {}".format(start, end))
        year = day[2:4]
        month = day[4:6]

        #ファイル名の生成
        wind_file_name = "../data/csv_w/ecm" + day[2:] + ".csv"
        ice_file_name = "../data/csv_iw/" + day[2:] + ".csv"
        ic0_145_file_name = "../data/csv_ic0/IC0_" + day + ".csv"
        sit_145_file_name = "../data/csv_sit/SIT_" + day + ".csv"
        coeff_file_name = "../data/csv_A_30/ssc_amsr_ads" + str(year) + str(
            month) + "_" + str(span) + "_fin.csv"
        hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + str(
            day)[:6] + ".csv"
        # wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv"
        # t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv"

        skipping_boolean = ("coeff" not in get_columns) and (not all([
            os.path.isfile(wind_file_name),
            os.path.isfile(ice_file_name),
            os.path.isfile(coeff_file_name)
        ]))
        if ("ic0_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(ic0_145_file_name)
            ]))
        if ("sit_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(sit_145_file_name)
            ]))

        if skipping_boolean == True:
            print("\tSkipping " + day + " file...")
            date_ax_str.remove(day)
            bb = date(int(day[:4]), int(day[4:6]), int(day[6:]))
            date_ax.remove(bb)
            skipping_date_str.append(day)
            continue

        data = pd.DataFrame({"data_idx": np.array(ocean_grid_145).ravel()})
        if "ex_1" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name))
            tmp = calc_data.get_w_regression_data(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ex_2" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  hermert_file_name))
            tmp = calc_data.get_w_hermert_data(wind_file_name, ice_file_name,
                                               hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "w" in get_columns:
            print("\t{}".format(wind_file_name))
            tmp = calc_data.get_1day_w_data(wind_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "iw" in get_columns:
            print("\t{}".format(ice_file_name))
            tmp = calc_data.get_1day_iw_data(ice_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ic0_145" in get_columns:
            print("\t{}".format(ic0_145_file_name))
            tmp = calc_data.get_1day_ic0_data(ic0_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "sit_145" in get_columns:
            print("\t{}".format(sit_145_file_name))
            tmp = calc_data.get_1day_sit_data(sit_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "coeff" in get_columns:
            print("\t{}".format(coeff_file_name))
            tmp = calc_data.get_1month_coeff_data(coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "hermert" in get_columns:
            print("\t{}".format(hermert_file_name))
            tmp = calc_data.get_1month_hermert_data(hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        """
		if "w10m" in get_columns:
			tmp = calc_data.get_1day_w10m_data(wind10m_file_name)
			data = pd.concat([data, tmp], axis=1)
		if "t2m" in get_columns:
			tmp = calc_data.get_1day_t2m_data(t2m_file_name)
			data = pd.concat([data, tmp], axis=1)
		"""

        data = calc_data.get_masked_region_data(data, region)

        if ("coeff" in get_columns):
            print("\tSelected only coeff data. Getting out of the loop...")
            continue

        if accumulate == True:
            data_1 = data.drop("data_idx", axis=1)
            print("\t{}".format(data_1.columns))
            accumulate_data.append(np.array(data_1))

    if accumulate == True:
        print("accumulate: True\tdata type: array")
        return date_ax, date_ax_str, skipping_date_str, accumulate_data
    else:
        print("accumulate: False\tdata type: DataFrame")
        return date_ax, date_ax_str, skipping_date_str, data
Beispiel #2
0
def visual_2winds(wind_file_name,
                  ice_file_name,
                  latlon145_file_name,
                  points,
                  v_ratio=False,
                  v_difftheta=False,
                  threshold=0.05,
                  show=True):
    """
	風と氷の速度の相関の可視化
	"""
    from matplotlib.colors import LinearSegmentedColormap

    def generate_cmap(colors):
        #自分で定義したカラーマップを返す
        values = range(len(colors))

    vmax = np.ceil(np.max(values))
    color_list = []
    for v, c in zip(values, colors):
        color_list.append((v / vmax, c))
    return LinearSegmentedColormap.from_list('custom_cmap', color_list)
    cm = generate_cmap(['#87CEEB', '#2E8B57', '#F4A460'])

    w_u1, w_v1, w_speed1 = calc_data.get_1day_w_data(wind_file_name)
    u_true, v_true, speed_true = calc_data.get_1day_ice_data(ice_file_name)
    lon, lat = calc_data.get_lonlat(latlon145_file_name)

    def get_theta(u, v):
        #u,v: Matrix(145*145)
        return np.arctan2(v, u)

    def get_wpc(ice_v, wind_v):
        #A,B: Matrix(145*145)
        return (ice_v / wind_v)

    def get_diff_theta(i_t, w_t):
        #t1,t2: theta Matrix(145*145)
        return i_t - w_t

    #角度
    wind_theta = get_theta(w_v1, w_u1)
    ice_theta = get_theta(v_true, u_true)
    diff_theta = get_diff_theta(ice_theta, wind_theta)
    #風力比
    wpc = get_wpc(speed_true, w_speed1) / 100
    wpc[wpc > threshold] = np.nan
    wpc_high = get_wpc(speed_true, w_speed1) / 100
    wpc_high[wpc_high <= threshold] = np.nan

    m = Basemap(lon_0=180,
                boundinglat=50,
                resolution='l',
                projection='npstere')
    fig = plt.figure(figsize=(6, 6))

    x, y = m(lon, lat)
    x1 = np.reshape(x, (145, 145), order='F')
    y1 = np.reshape(y, (145, 145), order='F')

    m.drawcoastlines(color='0.15')
    if v_ratio == True:
        wpc = np.reshape(wpc, (145, 145), order='F')
        wpc = np.ma.masked_invalid(wpc)
        wpc_high = np.reshape(wpc_high, (145, 145), order='F')
        wpc_high = np.ma.masked_invalid(wpc_high)

        #m.pcolormesh(x1[points], y1[points], wpc_high[points], cmap='tab10')
        #m.plot(x1[points], y1[points], 'bo', markersize=2)
        m.pcolormesh(x1[points], y1[points], wpc[points], cmap=plt.cm.jet)
        m.colorbar(location='bottom')

    elif v_difftheta == True:
        diff_theta = np.reshape(diff_theta, (145, 145), order='F')
        #m.pcolormesh(x1[points], y1[points], np.absolute(diff_theta)[points], cmap=plt.cm.jet)
        m.pcolormesh(x1[points],
                     y1[points],
                     diff_theta[points],
                     cmap=plt.cm.jet)
        m.colorbar(location='bottom')

    #hexbinで可視化
    #seismic = 'seismic'
    #m.hexbin(x, y, C=diff_theta.reshape((145*145,1), order='F'), reduce_C_function = max, gridsize=100, cmap="seismic")
    #m.colorbar(location='bottom', format='%.1f')

    #コンター図
    #m.contour(x1[points], y1[points], diff_theta)
    #風の可視化(quiver)
    #m.quiver(x1[points], y1[points], w_u1[points], w_v1[points], w_speed1[points])
    #m.quiver(x1[points], y1[points], u_true[points], v_true[points], speed_true[points])

    if show == True:
        plt.show()
Beispiel #3
0
def main_data(start, end, **kwargs):
    span = kwargs["span"]
    region = kwargs["region"]
    get_columns = kwargs["get_columns"]
    accumulate = kwargs["accumulate"]

    date_ax, date_ax_str = get_date_ax(start, end)
    N = len(date_ax_str)
    skipping_date_str = []
    accumulate_data = []
    for i, day in enumerate(date_ax_str):
        print("{}/{}: {}".format(i + 1, N, day))
        year = day[2:4]
        month = day[4:6]

        #ファイル名の生成
        wind_file_name = "../data/wind_data/ecm" + day[2:] + ".csv"
        ice_file_name = "../data/ice_wind_data/" + day[2:] + ".csv"
        ic0_145_file_name = "../data/IC0_csv/2" + day + "A.csv"
        ic0_900_file_name = "../data/IC0_csv/2" + day + "A.csv"
        coeff_file_name = "../data/A_csv/ssc_amsr_ads" + str(year) + str(
            month) + "_" + str(span) + "_fin.csv"
        wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv"
        t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv"

        if not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(ic0_145_file_name),
                os.path.isfile(coeff_file_name)
        ]):
            print("\tSkipping " + day + " file...")
            date_ax_str.remove(day)
            date_ax.remove(datetime(day[:4] + "-" + day[4:6] + "-" + day[6:]))
            skipping_date_str.append(day)
            continue

        data = pd.DataFrame({"data_idx": np.zeros(145 * 145)})
        iw_idx_t, ic0_idx_t = np.array([-1]), np.array([-1])
        if "ex_1" in get_columns:
            tmp = calc_data.get_w_regression_data(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name)
            iw_idx_t = np.array(tmp["data_idx"])
            data = pd.concat([data, tmp.loc[:, ["A_by_day", "theta_by_day"]]],
                             axis=1)
        if "w" in get_columns:
            tmp = calc_data.get_1day_w_data(wind_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "iw" in get_columns:
            tmp = calc_data.get_1day_ice_data(ice_file_name)
            iw_idx_t = np.array(tmp["iw_idx_t"])
            data = pd.concat([data, tmp.loc[:, ["iw_u", "iw_v", "iw_speed"]]],
                             axis=1)
        if "ic0_145" in get_columns:
            tmp = calc_data.get_1day_ic0_data(ic0_file_name,
                                              grid900to145_file_name)
            ic0_idx_t = np.array(tmp["ic0_idx_t"])
            data = pd.concat([data, tmp.loc[:, ["ic0_145"]]], axis=1)
        if "coeff" in get_columns:
            tmp = calc_data.get_1month_coeff_data(coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "w10m" in get_columns:
            tmp = calc_data.get_1day_w10m_data(wind10m_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "t2m" in get_columns:
            tmp = calc_data.get_1day_t2m_data(t2m_file_name)
            data = pd.concat([data, tmp], axis=1)

        mat = iw_idx_t.ravel().tolist() + ic0_idx_t.ravel().tolist()
        data_t_idx = calc_data.get_non_nan_idx(mat, ocean_idx, strict=True)
        data.loc[data.data_idx, data_t_idx] = 1
        data = calc_data.get_masked_region_data(data, region)

        if ("coeff" in get_columns) and (len(get_columns) == 1):
            print("\tSelected only coeff data. Getting out of the loop...")
            continue

        if accumulate == True:
            data = data.loc[:, get_columns]
            print("\t{}".format(data.columns))
            accumulate_data.append(np.array(data))

    if accumulate == True:
        print("accumulate: True\tdata type: array")
        return date_ax, date_ax_str, skipping_date_str, accumulate_data
    else:
        print("accumulate: False\tdata type: DataFrame")
        return date_ax, date_ax_str, skipping_date_str, data
Beispiel #4
0
def test_w_iw_by_year():
    dirs_1 = "../result_h/test/w_iw_by_year/"
    dirs_2 = "../result_h/test/w_iw_by_year_without_ocean/"
    if not os.path.exists(dirs_1):
        os.makedirs(dirs_1)
    if not os.path.exists(dirs_2):
        os.makedirs(dirs_2)

    y_list = [
        "03", "04", "05", "06", "07", "08", "09", "10", "13", "14", "15", "16"
    ]
    month_list = [
        "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"
    ]

    for month in month_list:
        print("************" + month + "************")
        helmert_30_30_fname = "../data/csv_Helmert_both_30/Helmert_both_30_2003" + month + ".csv"
        data_30 = pd.read_csv(helmert_30_30_fname)
        #area_16_index = np.array(data_30.loc[data_30.area_label==16, :].index)
        area_16_index = np.array(data_30[(data_30.area_label.isin(
            list(range(17))))].dropna().index).tolist()
        plot_grids = random.sample(area_16_index, 15)
        print(plot_grids)

        gw_list = []
        iw_list = []
        iw_ocean_list = []
        for year in y_list:
            helmert_file_name = "../data/csv_Helmert_both_30/Helmert_both_30_20" + year + month + ".csv"
            gw_file_name = "../data/csv_w/ecm" + year + month + "15.csv"
            iw_file_name = "../data/csv_iw/" + year + month + "15.csv"

            helmert_data = calc_data.get_1month_helmert_data(helmert_file_name)
            gw_data = calc_data.get_1day_w_data(gw_file_name)
            iw_data = calc_data.get_1day_iw_data(iw_file_name)

            gw_speed = np.array(gw_data.loc[plot_grids, "w_speed"])
            iw_speed = np.array(iw_data.loc[plot_grids, "iw_speed"])
            iw_ocean_u = np.array(iw_data.loc[plot_grids, "iw_u"] -
                                  helmert_data.loc[plot_grids, "ocean_u"])
            iw_ocean_v = np.array(iw_data.loc[plot_grids, "iw_v"] -
                                  helmert_data.loc[plot_grids, "ocean_v"])
            iw_speed_ocean = np.sqrt(iw_ocean_u**2 + iw_ocean_v**2)

            gw_list.append(gw_speed)
            iw_list.append(iw_speed)
            iw_ocean_list.append(iw_speed_ocean)

        gw_array = np.array(gw_list)
        iw_array = np.array(iw_list)
        iw_ocean_array = np.array(iw_ocean_list)

        for i in range(len(plot_grids)):
            gw = gw_array[:, i]
            iw = iw_array[:, i]
            iw_ocean = iw_ocean_array[:, i]
            save_name_1 = dirs_1 + month + "15_grid_" + str(
                plot_grids[i]) + ".png"
            save_name_2 = dirs_2 + month + "15_grid_" + str(
                plot_grids[i]) + ".png"
            try:
                sns.set_style("darkgrid")
                sns.jointplot(x=gw, y=iw, kind="reg")
                plt.savefig(save_name_1)
                plt.close()
                sns.set_style("darkgrid")
                sns.jointplot(x=gw, y=iw_ocean, kind="reg")
                plt.savefig(save_name_2)
                plt.close()
            except:
                continue