def math(arith_str): #替换空格、--、++、-+、+-、/+、*+为去空格、+、+、-、-、/、*,还有去掉行首的 + 号 arith_str = equl_tihuan(arith_str) # 如果发现括号,则先算括号里面的 if re.findall('[()]+', arith_str): arith_sub = re.findall('[(][^()]+[)]', arith_str) #取所有最内部括号 n = 0 for i in arith_sub: # 取括号内的表达式 j = re.search('[^()]+',i).group() # 算括号内的值 i = calculate(j) # 将原来的括号替换为算出来的值 arith_str = arith_str.replace(arith_sub[n], i, 1) n = n + 1 # print("去最外层括号:", arith_str) # 如果没有括号,则再算加减乘除 elif re.findall('[+*/-]+', arith_str): # print(arith_str) if re.search('e-',arith_str) == None: arith_str = calculate(arith_str) return arith_str # 如果就一个字符串,不包含括号和加减乘除则,直接返回 else: return arith_str # arith_str = equl_tihuan(arith_str) # print("asadsad") return math(arith_str)
def test_whitespaces(): assert calculate('5 + 5') == 10 assert calculate('5+5 -3') == 7 assert calculate('5 + 9') == 14 assert calculate('5\t+6') == 11 assert calculate('8\n+5+ 7') == 20
def main(): args = parse_args() csv_filename = args.data result_csv = args.outfile data_dict = load_data(csv_filename) calculate(data_dict) write_csv(data_dict, result_csv) write_sql(result_csv, args=args)
def train(model, sess, saver, epochs, batch_size, data_train, id2word, id2tag): """ 模型训练 :param model: model的一些信息 :param sess: TensorFlow会话内容 :param saver: TensorFlow保存器 :param epochs: 所有训练数据forwward+bachword后更新参数的次数 :param batch_size: 一次iteration选取的样本数量 :param data_train: 输入样本 :param id2word: 给每个word映射了一个id, 通过id 查找word :param id2tag: 给每个word映射了一个tag, 通过id 查找tag :return: """ batch_num = int(data_train.y.shape[0] / batch_size) # 计算一次iteration需要多少轮 for epoch in range(epochs): for batch in range(batch_num): x_batch, y_batch = data_train.next_batch(batch_size) feed_dict = {model.input_data: x_batch, model.labels: y_batch} predict_train, _ = sess.run( [model.viterbi_sequence, model.train_op], feed_dict=feed_dict) acc = 0 # 累计 if batch % 100 == 0: for i, j in product(range(len(y_batch)), range(len(y_batch[0]))): if y_batch[i][j] == predict_train[i][j]: acc += 1 recall_result = acc * 1.0 / (len(y_batch) * len(y_batch[0])) print("召回率:", recall_result) # 保存结果 save_path_name = os.path.join(os.getcwd(), "model", "model" + str(epoch) + ".ckpt") print(save_path_name) if epoch % 5 == 0: saver.save(sess, save_path_name) print("in epoch %d" % epoch, "model is saved") entity_result = [] # 应该是实体结果 entity_all = [] # 和上面一样, 功能未知 for batch in range(batch_num): x_batch, y_batch = data_train.next_batch(batch_size) feed_dict = {model.input_data: x_batch, model.labels: y_batch} predict_train = sess.run([model.viterbi_sequence], feed_dict) predict_train = predict_train[0] # 未知 entity_result = calculate(x_batch, predict_train, id2word, id2tag, entity_result) entity_all = calculate(x_batch, y_train, id2word, id2tag, entity_all) and_set = set(entity_result) & set(entity_all) if len(and_set) > 0: precision_ratio = len(and_set) / len(entity_result) recall_ratio = len(and_set) / len(entity_all) f_value = 2 * precision_ratio * recall_ratio / ( precision_ratio + recall_ratio) print("precision_ratio is :", precision_ratio) print("recall_ratio is : ", recall_ratio) print("f value is :", f_value) else: print("something wrong! no and set!!")
def calc_everything(tup): """"Designed to be run in other tread. Calculates everything""" global progress filename = tup[0] q = tup[1] filename = filename.rstrip('.png') _time = time.time() extracted = c.extract(filename, IMAGES_FOLDER, stepDEGR) #print('Extract time: ', time.time()-_time, ' File: ', filename) if extracted is not None: _time = time.time() output = [] if filename.startswith('3'): #pass for point in extracted: output.append(c.calculateTOP(point[0], point[1], point[2])) else: for point in extracted: output.append(c.calculate(point[0], point[1], point[2])) #print('Calculate time: ', time.time()-_time) q.put(output) mutex.lock() progress = progress + 1 print('DONE!!!', filename, "progress: ", progress, '\n') mutex.unlock() else: progress = progress + 1 print("Corrupted PNG file: ", filename, "progress: ", progress, '\n')
def pipeline(args): pd.options.mode.chained_assignment = None # Sanity check args if not parent_dir_exists(args.out): raise ValueError('--out flag points to an invalid path.') print('Preparing files for analysis...') gwas_snps, bed, N1, N2 = prep(args.bfile, args.partition, args.sumstats1, args.sumstats2, args.N1, args.N2) print('Calculating LD scores...') ld_scores = ldscore(args.bfile, gwas_snps) gwas_snps = gwas_snps[gwas_snps['SNP'].isin(ld_scores['SNP'])] print('{} SNPs included in our analysis...'.format(len(gwas_snps))) print('Calculating heritability...') h_1, h_2 = heritability(gwas_snps, ld_scores, N1, N2) print( 'The genome-wide heritability of the first trait is {}.\nThe genome-wide heritability of the second trait is {}.' .format(h_1, h_2)) print('Calculating phenotypic correlation...') pheno_corr, pheno_corr_var = pheno(gwas_snps, ld_scores, N1, N2, h_1, h_2) print('Calculating local genetic covariance...') out = calculate(args.bfile, bed, args.thread, gwas_snps, ld_scores, N1, N2, pheno_corr, pheno_corr_var) out.to_csv(args.out, sep=' ', na_rep='NA', index=False)
def pipeline(args): pd.options.mode.chained_assignment = None # Sanity check args if args.save_ld is not None and args.use_ld is not None: raise ValueError('Both the --save-ld and --use-ld flags were set. ' 'Please use only one of them.') if args.save_ld is not None: if not parent_dir_exists(args.save_ld): raise ValueError('--save-ld flag points to an invalid path.') if args.use_ld is not None: if not os.path.exists(args.use_ld + '.csv.gz'): raise ValueError('--use-ld flag points to an invalid path.') if not parent_dir_exists(args.out): raise ValueError('--out flag points to an invalid path.') print('Preparing files for analysis...') gwas_snps, N1, N2, annots = prep(args.bfile, args.annot, args.sumstats1, args.sumstats2) if args.N1 is not None: N1 = args.N1 if args.N2 is not None: N2 = args.N2 if args.use_ld is not None: print('Loading LD scores from {}'.format(args.use_ld)) ld_scores = pd.read_csv(args.use_ld + '.csv.gz', sep=' ') else: print('Calculating LD scores...') ld_scores = ldscore(args.bfile, annots, gwas_snps, args.save_ld) print('Calculating correlation...') out = calculate(gwas_snps, ld_scores, annots, N1, N2) print('\nFinal results:\n{}\n'.format(out)) print('\nView ldsc.log for verbose output.') out.insert(0, 'annot_name', out.index) out.to_csv(args.out, sep=' ', na_rep='NA', index=False)
def get(self): d = self.request.get('astro') celebbday = datetime.datetime.strptime(d, '%d/%m/%Y').date().strftime('%Y%m%d') [cellewis, celspiller, celchinese, celmillman] = calculate.calculate(celebbday) res = [] infile = open("celebs") for line in infile.readlines(): resline = [] tokens = line.split("|") name = tokens[0] resline.append(name) occup = tokens[1] resline.append(occup) tokens = tokens[2].split(":") if celspiller in tokens: resline.append(celspiller) if celchinese in tokens: resline.append(celchinese) for lewi in cellewis: if lewi in tokens: resline.append(lewi) if len(resline) > 5: # to avoid unnecessary sorting later res.append(resline) # sort according to list size, negative is taken # so that the sorting is descending #res.sort(lambda x, y: cmp(-len(x), -len(y))) res = res[0:100] self.response.out.write(simplejson.dumps(res))
def text_calculate(string): numbers = { 'один': '1', 'два': '2', 'три': '3', 'четыре': '4', 'пять': '5', 'шесть': '6', 'семь': '7', 'восемь': '8', 'девять': '9', 'ноль': '0' } operators = {'плюс': '+', 'минус': '-', 'умножить': '*', 'делить': '/'} string = string.split() word_ind = 0 num_string = '' while word_ind < len(string): if string[word_ind] in numbers: num_string = num_string + numbers[string[word_ind]] elif string[word_ind] in operators: num_string = num_string + operators[string[word_ind]] elif string[ word_ind] == 'и' and word_ind - 1 >= 0 and word_ind + 1 < len( string) and string[word_ind - 1] in numbers and string[word_ind + 1] in numbers: num_string = num_string + '.' word_ind += 1 return calculate(num_string)
def get(self): d = self.request.get('astro') celebbday = datetime.datetime.strptime( d, '%d/%m/%Y').date().strftime('%Y%m%d') [cellewis, celspiller, celchinese, celmillman] = calculate.calculate(celebbday) res = [] infile = open("celebs") for line in infile.readlines(): resline = [] tokens = line.split("|") name = tokens[0] resline.append(name) occup = tokens[1] resline.append(occup) tokens = tokens[2].split(":") if celspiller in tokens: resline.append(celspiller) if celchinese in tokens: resline.append(celchinese) for lewi in cellewis: if lewi in tokens: resline.append(lewi) if len(resline) > 5: # to avoid unnecessary sorting later res.append(resline) # sort according to list size, negative is taken # so that the sorting is descending #res.sort(lambda x, y: cmp(-len(x), -len(y))) res = res[0:100] self.response.out.write(simplejson.dumps(res))
def test_speed_increase_calculate_valid(self): calc = calculate() car_speed_in = 10.4673 road_speed_in = 15 result = calc.speed_increase(car_speed_in, road_speed_in) #valid speed answer = -4.5327 #10.4673 - 15 = -4.5327 self.assertEqual(answer, result)
def test_average_speed_calculate_invalid2(self): calc = calculate() time_1_in = 170 time_2_in = 120 dist_in = 4 result = calc.average_speed(time_1_in, time_2_in, dist_in)#invalid speed self.assertFalse(result)
def test_speed_increase_calculate_valid(self): calc = calculate() car_speed_in = 10.4673 road_speed_in = 15 result = calc.speed_increase(car_speed_in, road_speed_in)#valid speed answer = -4.5327 #10.4673 - 15 = -4.5327 self.assertEqual(answer, result)
def pipeline(args): pd.options.mode.chained_assignment = None # Sanity check args if not parent_dir_exists(args.out): raise ValueError('--out flag points to an invalid path.') print('Preparing files for analysis...') gwas_snps, reversed_alleles_ref, bed, N1, N2 = prep(args.bfile1, args.bfile2, args.partition, args.sumstats1, args.sumstats2, args.N1, args.N2) print('Calculating LD scores for the first population...') ld_scores1 = ldscore(args.bfile1, gwas_snps) print('Calculating LD scores for the second population...') ld_scores2 = ldscore(args.bfile2, gwas_snps) ld_scores1 = ld_scores1[ld_scores1['SNP'].isin(ld_scores2['SNP'])] ld_scores2 = ld_scores2[ld_scores2['SNP'].isin(ld_scores1['SNP'])] subset_index = gwas_snps['SNP'].isin(ld_scores1['SNP']) gwas_snps = gwas_snps[subset_index] reversed_alleles_ref = reversed_alleles_ref[subset_index] print('{} SNPs included in our analysis...'.format(len(gwas_snps))) #print('Calculating heritability...') #h_1, h_2 = heritability(gwas_snps, ld_scores1, ld_scores2, N1, N2) #print('The genome-wide heritability of the first trait is {}.\nThe genome-wide heritability of the second trait is {}.'.format(h_1, h_2)) print('Calculating local genetic covariance...') out = calculate(args.bfile1, args.bfile2, bed, args.thread, gwas_snps, reversed_alleles_ref, N1, N2, args.genome_wide, ld_scores1, ld_scores2) out.to_csv(args.out, sep=' ', na_rep='NA', index=False)
def update_text(self): """Called whenever the text is updated""" # Blank value for answer answer = '' # Get the text # Get the variable (and start value if applicable) # Get the answer # Give the text the extra d/dx, int, or sum if self.mode == 'Derivative': text = self.ui.text_entry_d.text() if len(text) > 0: variable = self.ui.variable_d.currentText() answer = calculate(self.mode, text, variable) text = f'd/d{variable} ({text})' elif self.mode == 'Integral': text = self.ui.text_entry_i.text() if len(text) > 0: variable = self.ui.variable_i.currentText() answer = calculate(self.mode, text, variable, start=self.ui.lower_bound.text(), end=self.ui.upper_bound.text()) text = f'int {text}d{variable}' else: text = self.ui.text_entry_s.text() if len(text) > 0: variable = self.ui.variable_s.currentText() value = self.ui.value_s.text() answer = calculate(self.mode, text, variable, value=value, do_it=self.ui.button_value.isChecked()) text = fr'sum_({variable}={value})^infty {text}' try: # Blank input if len(text) == 0: load_svg(self.ui.input, to_svg(BLANK)) load_svg(self.ui.output, to_svg(BLANK)) # Not blank input else: load_svg(self.ui.input, to_svg(to_latex(text))) load_svg(self.ui.output, to_svg(to_latex(answer))) except ValueError: # If there's an input error pass
def test_average_speed_calculate_valid(self): calc = calculate() time_1_in = 120 time_2_in = 160 dist_in = 56 result = calc.average_speed(time_1_in, time_2_in, dist_in)#valid speed answer = 1.4 self.assertEqual(answer, result)
def test_average_speed_calculate_invalid2(self): calc = calculate() time_1_in = 170 time_2_in = 120 dist_in = 4 result = calc.average_speed(time_1_in, time_2_in, dist_in) #invalid speed self.assertFalse(result)
def test_average_speed_calculate_valid(self): calc = calculate() time_1_in = 120 time_2_in = 160 dist_in = 56 result = calc.average_speed(time_1_in, time_2_in, dist_in) #valid speed answer = 1.4 self.assertEqual(answer, result)
def test_basic_operators(): assert calculate('5+5') == 10 assert calculate('5*5') == 25 assert calculate('10/2') == 5 assert calculate('10-4') == 6 assert calculate('10%4') == 2 assert calculate('6/3') == 2 assert calculate('5-10') == -5 assert calculate('55+20') == 75
def __init__(self): super().__init__() self.setupUi(self) self.pushButton.clicked.connect(self.compute) self.comboBox.addItem('xgboost') self.comboBox.addItem('naive_bayes') self.comboBox.addItem('kmeans') self.calc = calculate.calculate() self.graphicsView = QGraphicsView() self.graphicsView_2 = QGraphicsView()
def get(self): bday = self.request.get('bday') btype = self.request.get('btype') [lewis, spiller, chinese, millman] = calculate.calculate(bday) logging.debug(lewis) lewis_int = [int(x) for x in lewis] mb = calculate.calculate_mbti_full([lewis, spiller, chinese, millman]) cycle, now_year, str_d = calculate.calculate_cycle(bday) res = {"lewis": lewis_int, "spiller": spiller, "chinese": chinese, "millman": millman, "mb": mb, "cycle": cycle} self.response.out.write(simplejson.dumps(res))
def run(self): while True: future_ticks = getFuturesTick(self.future_codes['IF'] + self.future_codes['IH'] + self.future_codes['IC']) index_ticks = getIndexTick(self.index_codes) result = calculate(future_ticks, index_ticks) self.update_date.emit(result) # print(result) time.sleep(1)
def analyze(recalculate=False): basename = os.path.basename(os.path.normpath(data_folder)) all_trajectories_filepath = basename + "_" + all_trajectories_file if (not recalculate) and os.path.exists(all_trajectories_filepath): df_all = pd.read_csv(all_trajectories_filepath, sep='\t') # print('A1', ~recalculate) else: data_files_list = [ f for f in glob.iglob(os.path.join(data_folder, r"*" + extension), recursive=False) ] file = data_files_list[0] df_all = pd.read_csv(file, sep='\t') for i in trange(1, np.min([max_N, len(data_files_list)]), desc='Loading data files'): # for file in data_files_list[1:]: # , desc='Loading data files'): file = data_files_list[i] df = pd.read_csv(file, sep='\t') df_all = df_all.append(df, ignore_index=True) df_all.to_csv(all_trajectories_filepath, sep='\t') # , na_rep='nan') # folder, _ = os.path.split(file_list[0]) results_path = results_folder reinit_folder(results_path) # Process from calculate import calculate calculate(csv_file=all_trajectories_filepath, results_folder=results_path, bl_produce_maps=True, snr_label=snr_label, sigma=sigma, recalculate=recalculate, ticks=True, txt_extension=extension, pdf=True, png=True, **kwargs)
def call_calculate(bot, update): equation = update.message.text.replace('/calculate', '').strip() if equation == "": q_equation = "" custom_keyboard = [['7', '8', '9', '*'], ['4', '5', '6', '-'], ['1', '2', '3', '+'], [',', '0', '=', '/']] reply_markup = telegram.ReplyKeyboardMarkup(custom_keyboard) bot.send_message(chat_id=update.message.chat_id, text="Калькулятор", reply_markup=reply_markup) return update.message.reply_text(calculate(equation))
def pipeline(args): pd.options.mode.chained_assignment = None # Sanity check args if not parent_dir_exists(args.out): raise ValueError('--out flag points to an invalid path.') print('Preparing files for analysis...') gwas_snps, N1, N2 = prep(args.bfile, args.chr, args.start, args.end, args.sumstats1, args.sumstats2, args.N1, args.N2) print('Calculating local TWAS...') out = calculate(args.bfile, gwas_snps, N1, N2, args.h1, args.h2, args.shrinkage) out.to_csv(args.out, sep=' ', na_rep='NA', index=False)
def __init__(self, request_data): self.request_data = request_data self.valid = validate() site_id = self.valid.site(request_data['site_id']) self.site_cam_id = self.valid.cam(request_data['camera_id']) self.uuid = self.valid.uuid(request_data['uuid']) self.time_2 = self.valid.time(request_data['epoch_time']) self.sqlite = database() self.calc = calculate() self.s_id, self.s_limit = self.sqlite.find_site(site_id) self.cam_id = self.sqlite.get_cam_id(self.site_cam_id, self.s_id) self.curr_cam_m = self.sqlite.get_cam_m(self.cam_id, self.s_id) for plate_no in range(0,len(self.request_data['results'])): self.plate(plate_no)
def get(self): res = [] bdays = self.request.get('bdays') for bday in bdays.split(","): bday_date = datetime.datetime.strptime(bday, '%B %d %Y').date() bday_pb_date = bday_date.strftime('%Y%m%d') [lewis, spiller, chinese, millman] = calculate.calculate(bday_pb_date) logging.debug(lewis) lewis_int = [int(x) for x in lewis] mb_astro_res = calculate.calculate_mb([lewis, spiller, chinese, millman]) cycle, now_year, str_d = calculate.calculate_cycle(bday_pb_date) res.append({"lewis": lewis_int, "spiller": spiller, "chinese": chinese, "millman": millman, "mb": mb_astro_res, "cycle": cycle, "bday": bday_pb_date}) self.response.out.write(simplejson.dumps(res))
def main(arg_str): """ Main analysis file that uses TRamWAy """ # Define arguments arg_parser = argparse.ArgumentParser( description='TRamWAy wrapper for analysis of a random walk trajectory') arg_parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + str(version)) arg_parser.add_argument('-f', '--file', required=True, action='store', type=str, help='Path to a trajectory') # Analyze arguments input_args = arg_parser.parse_args(arg_str.split()) # Use the analyzed arguments file = input_args.file print(file) # Tesselate and perform inference # Calculate Bayes factors and output results _, output_folder = folders() calculate(file, output_folder, bl_produce_maps=False, snr_label=snr_label, sigma=sigma, extension=extension, **kwargs)
def get(self): bday = self.request.get('bday') btype = self.request.get('btype') [lewis, spiller, chinese, millman] = calculate.calculate(bday) logging.debug(lewis) lewis_int = [int(x) for x in lewis] mb = calculate.calculate_mbti_full([lewis, spiller, chinese, millman]) cycle, now_year, str_d = calculate.calculate_cycle(bday) res = { "lewis": lewis_int, "spiller": spiller, "chinese": chinese, "millman": millman, "mb": mb, "cycle": cycle } self.response.out.write(simplejson.dumps(res))
def get(self): d = self.request.get('d') btype = self.request.get('btype') try: lewis, spiller, chinese, millman = calculate.calculate(d) lewi_summary = self.get_lewi(lewis[0]) spiller_summary = self.get_spiller(spiller) chinese_summary = self.get_chinese(chinese) millman_summary = self.get_millman(millman[0]) mbti_summary = self.get_mbti() cycle, now_year, str_d = calculate.calculate_cycle(d) mb_astro_res = calculate.calculate_mbti_full( [lewis, spiller, chinese, millman]) logging.debug(mb_astro_res) path = os.path.join(os.path.dirname(__file__), 'reading.html') template_values = { 'code_date': d, 'date': str_d, 'lewi_main': lewis[0], 'lewis': lewis, 'spiller': spiller, 'spiller_converted': convertSpiller(spiller), 'chinese': chinese, 'btype': btype, 'millman': millman, 'millman_main': millman[0], 'mb': mb_astro_res, 'lewi_summary': lewi_summary, 'spiller_summary': spiller_summary, 'chinese_summary': chinese_summary, 'millman_summary': millman_summary, 'mbti_summary': mbti_summary, 'cycle': cycle, 'now_year': now_year } except Exception, e: logging.debug(e) path = os.path.join(os.path.dirname(__file__), 'explore.html') template_values = { 'error': 'Wrong date', }
def get(self): d = self.request.get('d') btype = self.request.get('btype') try: lewis, spiller, chinese, millman = calculate.calculate(d) lewi_summary = self.get_lewi(lewis[0]) spiller_summary = self.get_spiller(spiller) chinese_summary = self.get_chinese(chinese) millman_summary = self.get_millman(millman[0]) mbti_summary = self.get_mbti() cycle, now_year, str_d = calculate.calculate_cycle(d) mb_astro_res = calculate.calculate_mbti_full([lewis, spiller, chinese, millman]) logging.debug(mb_astro_res) path = os.path.join(os.path.dirname(__file__), 'reading.html') template_values = { 'code_date': d, 'date': str_d, 'lewi_main': lewis[0], 'lewis': lewis, 'spiller': spiller, 'spiller_converted': convertSpiller(spiller), 'chinese': chinese, 'btype': btype, 'millman': millman, 'millman_main': millman[0], 'mb': mb_astro_res, 'lewi_summary': lewi_summary, 'spiller_summary': spiller_summary, 'chinese_summary': chinese_summary, 'millman_summary': millman_summary, 'mbti_summary': mbti_summary, 'cycle': cycle, 'now_year': now_year } except Exception, e: logging.debug(e) path = os.path.join(os.path.dirname(__file__), 'explore.html') template_values = { 'error': 'Wrong date', }
def result(self,master): try: # calculate rate = evaluate(self.rateEntry.get()) distance = evaluate(self.distanceEntry.get()) price = evaluate(self.priceEntry.get()) rate = c.rate(rate,self.rateUnit.type) distance = c.distance(distance,self.distanceUnit.type) price = c.price(price,self.priceUnit.type) calculated = c.calculate(rate,distance,price) self.showRes(f"Total Cost: ${calculated:.2f}") except ZeroDivisionError: print ("Error: Dividing by Zero") self.showRes("Error: Dividing by Zero")
def GetMoodIndex(N, day): AA4_LIST = [] #存放AA4数据的列表 AA5_LIST = [] #存放AA5数据的列表 AA6_LIST = [] c = calculate(N, day) highlist = c.GetHighpxList() lowlist = c.GetLowhpxList() HHV = c.HHV(highlist) LLV = c.LLV(lowlist) for i in range(12, -1, -1): AA4_LIST.append(c.RSV(c.GetClosepx(i), LLV, HHV)) #计算最近心情指数 i = 0 j = 0 SMA(AA4_LIST, i, 13, 8, AA5_LIST) SMA(AA5_LIST, j, 13, 8, AA6_LIST) INDEX = math.ceil(AA6_LIST[-1]) return INDEX
def GetMoodIndex(N,day): AA4_LIST = [] #存放AA4数据的列表 AA5_LIST = [] #存放AA5数据的列表 AA6_LIST = [] c = calculate(N,day) highlist = c.GetHighpxList() lowlist = c.GetLowhpxList() HHV = c.HHV(highlist) LLV = c.LLV(lowlist) for i in range(12,-1,-1): AA4_LIST.append(c.RSV(c.GetClosepx(i), LLV, HHV)) #计算最近心情指数 i = 0 j = 0 SMA(AA4_LIST,i,13,8,AA5_LIST) SMA(AA5_LIST,j,13,8,AA6_LIST) INDEX = math.ceil(AA6_LIST[-1]) return INDEX
def handleImageProcessing(msg): nmsg = msg[22:] cb = (base64.urlsafe_b64decode(nmsg + '=' * (4 - len(nmsg) % 4))) imgarr = idc.bytes_to_np_array(cb) imgarr = imgarr[:, :, 0:3] imgarr = np.stack([imgarr[:, :, 2], imgarr[:, :, 1], imgarr[:, :, 0]], axis=2) imgarr = np.transpose(imgarr, (2, 0, 1)) / 255 #bb: 416*416 dm: detections, classes, depthmap = calculate.calculate(imgarr) dist = np.sum(depthmap[64 - 10:64 + 10, 80 - 40:80 + 40]) print(dist) if dist < 1800: emit('vibrate', '6') elif dist < 2000: emit('vibrate', '5') elif dist < 2100: emit('vibrate', '4') elif dist < 2300: emit('vibrate', '2') elif dist < 2700: emit('vibrate', '1') print(detections, '\n') for x1, y1, x2, y2, _, _, c in detections: cl = classes[int(c)] object_width = int(x2 - x1) object_length = int(y2 - y1) if object_width <= 0 or object_length <= 0: break x1, x2 = x1 / 416 * 128, x2 / 416 * 160 # depthmap = depthmap[int(x1):int(x2), int(y1):int(y2)] # dist = numpy.sum(depthmap)/(x2-x1)/(y2-y1) print(dist) left, right = x1, 416 - x2 if abs(left - right) > 20: if left > right and dist < 2100: emit('playsound', cl + ' is on your right side. And it\'s pretty close') if left < right and dist < 2100: emit('playsound', cl + ' is on your right side. And it\'s pretty close')
def auto_calculate(bot, update): if update.message.text.startswith('Когда ближайшее полнолуние после'): date_pol = re.search('\d{4}-\d{2}-\d{2}', update.message.text) if date_pol is None: update.message.reply_text('Введите дату формата гггг-мм-дд') else: date_pol = date_pol.group(0) date_pol = ephem.next_full_moon(date_pol) update.message.reply_text("{}".format(date_pol)) return global q_equation if update.message.text != '=': q_equation = q_equation + update.message.text else: reply_markup = telegram.ReplyKeyboardRemove() bot.send_message(chat_id=update.message.chat_id, text=calculate(q_equation), reply_markup=reply_markup)
def get(self): d = self.request.get('astro') filter = self.request.get('filter') celebbday = datetime.datetime.strptime(d, '%d/%m/%Y').date().strftime('%Y%m%d') [cellewis, celspiller, celchinese, celmillman] = calculate.calculate(celebbday) res = [] infile = open("celeb_life_goal.txt") for line in infile.readlines(): try: tokens = line.split(":") if filter == '': if celmillman[0] == tokens[2].replace("\n",""): res.append([tokens[0], tokens[1]]) else: #logging.debug(tokens[1]) if (filter.lower() in tokens[1].lower()) and (celmillman[0] == tokens[2].replace("\n","")): res.append([tokens[0], tokens[1]]) except Exception, e: pass
def GetJValue(N, day): KLIST = [] #存放K值的列表 RSV_LIST = [] #存放RSV值的列表 DLIST = [] #存放D值的列表 c = calculate(N, day) highlist = c.GetHighpxList() lowlist = c.GetLowhpxList() HHV = c.HHV(highlist) LLV = c.LLV(lowlist) #计算最近5天内的RSV值 for i in range(4, -1, -1): #print i RSV_LIST.append(c.RSV(c.GetClosepx(i), LLV, HHV)) #计算K值 i = 0 j = 0 SMA(RSV_LIST, i, 5, 1, KLIST) SMA(KLIST[2:], j, 3, 1, DLIST) K = KLIST[-1] D = DLIST[-1] J = 3 * K - 2 * D return J
def get(self): d = self.request.get('astro') filter = self.request.get('filter') celebbday = datetime.datetime.strptime( d, '%d/%m/%Y').date().strftime('%Y%m%d') [cellewis, celspiller, celchinese, celmillman] = calculate.calculate(celebbday) res = [] infile = open("celeb_life_goal.txt") for line in infile.readlines(): try: tokens = line.split(":") if filter == '': if celmillman[0] == tokens[2].replace("\n", ""): res.append([tokens[0], tokens[1]]) else: #logging.debug(tokens[1]) if (filter.lower() in tokens[1].lower()) and ( celmillman[0] == tokens[2].replace("\n", "")): res.append([tokens[0], tokens[1]]) except Exception, e: pass
def GetJValue(N,day): KLIST = [] #存放K值的列表 RSV_LIST = [] #存放RSV值的列表 DLIST = [] #存放D值的列表 c = calculate(N,day) highlist = c.GetHighpxList() lowlist = c.GetLowhpxList() HHV = c.HHV(highlist) LLV = c.LLV(lowlist) #计算最近5天内的RSV值 for i in range(4,-1,-1): #print i RSV_LIST.append(c.RSV(c.GetClosepx(i),LLV,HHV)) #计算K值 i = 0 j = 0 SMA(RSV_LIST,i,5,1,KLIST) SMA(KLIST[2:],j,3,1,DLIST) K = KLIST[-1] D = DLIST[-1] J = 3*K-2*D return J
def answer(text): try: dni, date, cp = _check_input_data(text) except OnVotarError as e: res = str(e) logger.info('%s', e.__class__.__name__) else: result = calculate(dni, date, cp) if result: res = ('{}\n{}\n{}\n\n' 'Districte: {}\n' 'Secció: {}\n' 'Mesa: {}').format(*result) logger.info('OK - %s %s', date[:4], cp) else: res = ('Les dades introduides no han retornat cap resultat.\n\n' 'Si has canviat recentment de domicili, prova el ' 'codi postal anterior.\n' 'Si tens més dubtes, contacta amb el correu electrònic ' 'oficial de la Generalitat:\n' '*****@*****.**') logger.info('DADES_INCORRECTES') return res
def run(self): """ Opens file based on filename given by the user on the start screen. Calls the calculate function from the calculate.py file to compute the normalised value for tastes/emotions. Sends this data in an array to the main thread. If the value for taste/emotion is above 60, it is classified as predominant. """ name = getName() with open('../GUI/files/' + str(name) + '.csv', 'r') as f: self.rows = sum(1 for line in f) time.sleep(0.8) while self.row < self.rows: values = calculate(self.row, name) # Thresholds for predominancy for i in range(0, 5): if values[i] > 55: External.pred.append(i) for i in range(5, 11): if values[i] > 60: External.pred.append(i) self.row += 1 if self.row == self.rows: values.clear() values.append(1) self.countChanged.emit(values) # OpenFace reads the frames of the video every 0.33 seconds therefore, sleep time = 0.33 time.sleep(0.033) values.clear()
import sys from datetime import datetime sys.path.append('..') import calculate file = open ("../famousbday.txt") for f in file.readlines(): s = f.split(":")[2].replace("\n","") name = f.split(":")[0].replace("\n","") occup = f.split(":")[1].replace("\n","") try: d = datetime.strptime(s, '%d/%m/%Y').date() res = calculate.calculate(d.strftime('%Y%m%d')) if "mathematician" in occup: if "194" in res[0]: print name, res, occup, d #if res[0][0] == '22' and res[3][0] == '303': # print name, res, occup, d except Exception, e: pass
# some experimental code to determine to full type based on # the celeb database. import sys; sys.path.append('..') import calculate import math if __name__ == '__main__': res = calculate.calculate('19730424') print calculate.calculate_mbti_full(res) print res #res = calculate.calculate('19451005') #res = calculate.calculate('19490222') #res = calculate.calculate('19820108') #res = calculate.calculate('19100422') # Norman Steenrod, #res = calculate.calculate('19160430') # Claude Shannon #res = calculate.calculate('19230521') # Armand Borel #res = calculate.calculate('19170617') # Atle Selberg #res = calculate.calculate('19090821') # Nikolay Bogolyubov #res = calculate.calculate('19640825') # Maxim Kontsevich #res = calculate.calculate('19341012') # Albert Shiryaev #res = calculate.calculate('19061024') # Alexander Gelfond #res = calculate.calculate('19381103') # Martin Dunwoody #res = calculate.calculate('19610804') # barack obama #res = calculate.calculate('19730326') # larry page #res = calculate.calculate('19730821') # sergey brin #res = calculate.calculate('19540226') # tayyip erdogan #res = calculate.calculate('19590226') # ahmet davutoglu #res = calculate.calculate('19501029') # abdullah gul
def test_speed_increase_calculate_invalid(self): calc = calculate() car_speed_in = '10.4673' road_speed_in = 'a0hbv' result = calc.speed_increase(car_speed_in, road_speed_in)#valid speed self.assertFalse(result)
def test_floating_point(): assert calculate('10/4') == 2.5 assert calculate('5.5*2') == 11 assert calculate('100/3') - 33.33 < 0.1 assert calculate('5.5+3.5') == 9 assert calculate('3.4-1.4') == 2
import pickle import sys sys.path.append('..') import calculate lewis, spiller, chinese, millman = calculate.calculate('19730424') #res = calculate.calculate('19451005') #res = calculate.calculate('19820108') #res = calculate.calculate('19490222') #res = calculate.calculate('19730326') #larry page #res = calculate.calculate('19730821') #brin #res = calculate.calculate('19540226') #res = calculate.calculate('19730423') #res = calculate.calculate('19480331') # al gore #res = calculate.calculate('19420108') # hawking #res = calculate.calculate('19610804') # obama print lewis, spiller, chinese, millman
def GetTradeDate(i): c = calculate() return c.tradedate[i]
# some experimental code to determine to full type based on # the celeb database. import sys import calculate import math if __name__ == '__main__': res = calculate.calculate('19730424') print calculate.calculate_mbti_full(res) print res #res = calculate.calculate('19451005') #res = calculate.calculate('19490222') #res = calculate.calculate('19820108') #res = calculate.calculate('19610804') # barack obama #res = calculate.calculate('19730326') # larry page #res = calculate.calculate('19730821') # sergey brin #res = calculate.calculate('19540226') # tayyip erdogan #res = calculate.calculate('19590226') # ahmet davutoglu #res = calculate.calculate('19501029') # abdullah gul #res = calculate.calculate('19560120') # bill maher #res = calculate.calculate('19700921') # jen #res = calculate.calculate('19180511') # richard feynman #res = calculate.calculate('19691228') # linus torvalds #res = calculate.calculate('19200102') # isaac asimov #res = calculate.calculate('19690312') # acun #res = calculate.calculate('19270622') # cetin altan #res = calculate.calculate('19560101') # mumtaz turkone #res = calculate.calculate('19550224') # steve jobs #res = calculate.calculate('19370611') # mumford
def test_operator_precedence(): # Test Precedence of operators assert calculate('2+7*2') == 16 assert calculate('4-6/3') == 2 assert calculate('4+5%3') == 6
def test_parentheses(): assert calculate('7+(5*2)') == 17 assert calculate('7*(5+2)') == 49 assert calculate('(7*3)+(9/3)') == 24 assert calculate('7+(7*(6+10/(1*2)))') == 84
__author__ = 'srtoosnye' # -*- coding: utf-8 -*- from Expr import Expr from calculate import calculate import data import sys conn = data.link_to_mysql() cursor = conn.cursor() data.create_table(cursor) expr = raw_input('请输入表达式:') if data.is_used_data(cursor, expr): sys.exit() s = Expr(expr) s.check_value() s.opt_value() data.store_result(cursor, calculate(s.get_postfix()), expr) conn.commit() conn.close()
# some experimental code to determine to full type based on # the celeb database. import sys import calculate import math if __name__ == '__main__': res = calculate.calculate('19730424') print calculate.calculate_mbti_full(res); print res #res = calculate.calculate('19451005') #res = calculate.calculate('19490222') #res = calculate.calculate('19820108') #res = calculate.calculate('19610804') # barack obama #res = calculate.calculate('19730326') # larry page #res = calculate.calculate('19730821') # sergey brin #res = calculate.calculate('19540226') # tayyip erdogan #res = calculate.calculate('19590226') # ahmet davutoglu #res = calculate.calculate('19501029') # abdullah gul #res = calculate.calculate('19560120') # bill maher #res = calculate.calculate('19700921') # jen #res = calculate.calculate('19180511') # richard feynman #res = calculate.calculate('19691228') # linus torvalds #res = calculate.calculate('19200102') # isaac asimov died 19920406 #res = calculate.calculate('19690312') # acun #res = calculate.calculate('19270622') # cetin altan #res = calculate.calculate('19560101') # mumtaz turkone #res = calculate.calculate('19550224') # steve jobs #res = calculate.calculate('19370611') # mumford #res = calculate.calculate('19470412') # tom clancy
records=[] insertQuery='insert into __table_name__(type,property,native_type,native_property,hit,total) VALUES(%s,%s,%s,%s,%s,%s);' insertQuery = insertQuery.replace('__table_name__',tableName) if lang !="FA": #print insertQuery filepath = 't.xml' tree = xml.parse(filepath) xmlRoot = tree.getroot() for c in xmlRoot.findall('.//Type'): typeName = c.attrib['name'] #typeName = 'http://dbpedia.org/ontology/University' native_type = findLabel(originTree,typeName,slang,0) if native_type == None: native_type = 'None' properties = calculate.calculate(typeName,lang) #print properties total = properties['__total__'] for property in properties: native_property = '' if property == '__total__': native_property = '__total__' else: native_property = findLabel(originTree,property[1:-1],slang,1) if native_property == None: native_property = findLabel(originTree,property[1:-1],slang,2) if native_property == None: native_property = 'None' hit = properties[property] record = (typeName,property,native_type,native_property,hit,total)