def solve(self): """Solve problem""" self.updateGeometry() self.updateMesh() self.ep = [self.ptype, self.t] self.D = cfc.hooke(self.ptype, self.E, self.v) cfu.info("Assembling system matrix...") nDofs = np.size(self.dofs) ex, ey = cfc.coordxtr(self.edof, self.coords, self.dofs) K = np.zeros([nDofs, nDofs]) for eltopo, elx, ely in zip(self.edof, ex, ey): Ke = cfc.planqe(elx, ely, self.ep, self.D) cfc.assem(eltopo, K, Ke) cfu.info("Solving equation system...") f = np.zeros([nDofs, 1]) bc = np.array([], 'i') bcVal = np.array([], 'i') bc, bcVal = cfu.applybc(self.bdofs, bc, bcVal, 5, 0.0, 0) cfu.applyforce(self.bdofs, f, 7, 10e5, 1) self.a, self.r = cfc.solveq(K, f, bc, bcVal) cfu.info("Computing element forces...") ed = cfc.extractEldisp(self.edof, self.a) self.vonMises = [] # For each element: for i in range(self.edof.shape[0]): # Determine element stresses and strains in the element. es, et = cfc.planqs(ex[i, :], ey[i, :], self.ep, self.D, ed[i, :]) # Calc and append effective stress to list. self.vonMises.append( sqrt( pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2]))
def on_calc_el_force(self, ex, ey, ed, element_type): if element_type == 2: es, et = cfc.plants(ex, ey, self.mesh.shape.ep, self.mesh.shape.D, ed) elMises = np.math.sqrt( pow(es[0, 0], 2) - es[0, 0] * es[0, 1] + pow(es[0, 1], 2) + 3 * pow(es[0, 2], 2)) else: es, et = cfc.planqs(ex, ey, self.mesh.shape.ep, self.mesh.shape.D, ed) elMises = np.math.sqrt( pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * pow(es[2], 2)) return elMises
bcVal = np.array([], 'f') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, left_support, 0.0, 0) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, right_support, 0.0, 2) f = np.zeros([nDofs, 1]) cfu.applyforcetotal(bdofs, f, top_line, -10e5, 2) a, r = cfc.solveq(K, f, bc, bcVal) ed = cfc.extractEldisp(edof, a) vonMises = [] for i in range(edof.shape[0]): es, et = cfc.planqs(ex[i, :], ey[i, :], ep, D, ed[i, :]) vonMises.append( sqrt(pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2])) # ----- Draw geometry cfv.drawGeometry(g) # ----- Draw the mesh. cfv.figure() cfv.drawMesh(coords=coords, edof=edof, dofsPerNode=mesh.dofsPerNode, elType=mesh.elType, filled=True,
# Handle triangle elements if elType == 2: es, et = cfc.plants(ex[i,:], ey[i,:], elprop[elementmarkers[i]][0], elprop[elementmarkers[i]][1], ed[i,:]) vonMises.append( np.math.sqrt( pow(es[0,0],2) - es[0,0]*es[0,1] + pow(es[0,1],2) + 3*pow(es[0,2],2) ) ) else: # Handle quad elements es, et = cfc.planqs(ex[i,:], ey[i,:], elprop[elementmarkers[i]][0], elprop[elementmarkers[i]][1], ed[i,:]) vonMises.append( np.math.sqrt( pow(es[0],2) - es[0]*es[1] + pow(es[1],2) + 3*pow(es[2],2) ) ) # ---- Visualise results ---------------------------------------------------- print("Drawing results...") cfv.figure() cfv.drawGeometry(g, title="Geometry") cfv.figure() cfv.drawMesh(coords=coords, edof=edof, dofsPerNode=dofsPerNode, elType=elType, filled=True, title="Mesh") #Draws the mesh.
# Handle triangle elements if el_type == 2: es, et = cfc.plants(ex[i,:], ey[i,:], elprop[elementmarkers[i]][0], elprop[elementmarkers[i]][1], ed[i,:]) von_mises.append( np.math.sqrt( pow(es[0,0],2) - es[0,0]*es[0,1] + pow(es[0,1],2) + 3*pow(es[0,2],2) ) ) else: # Handle quad elements es, et = cfc.planqs(ex[i,:], ey[i,:], elprop[elementmarkers[i]][0], elprop[elementmarkers[i]][1], ed[i,:]) von_mises.append( np.math.sqrt( pow(es[0],2) - es[0]*es[1] + pow(es[1],2) + 3*pow(es[2],2) ) ) # ---- Visualise results ---------------------------------------------------- cfu.info("Drawing results...") cfv.figure() cfv.draw_geometry(g, title="Geometry") cfv.figure() cfv.draw_mesh(coords=coords, edof=edof, dofs_per_node=dofs_per_node, el_type=el_type, filled=True, title="Mesh") #Draws the mesh.
def execute(self): # --- Överför modell variabler till lokala referenser ep = self.inputData.ep E = self.inputData.E v = self.inputData.v Elementsize = self.inputData.Elementsize # --- Anropa InputData för en geomtetribeskrivning geometry = self.inputData.geometry() # --- Nätgenerering elType = 3 # <-- Fyrnodselement flw2i4e dofsPerNode = 2 meshGen = cfm.GmshMeshGenerator(geometry) meshGen.elSizeFactor = Elementsize # <-- Anger max area för element meshGen.elType = elType meshGen.dofsPerNode = dofsPerNode meshGen.returnBoundaryElements = True coords, edof, dof, bdofs, elementmarkers, boundaryElements = meshGen.create( ) self.outputData.topo = meshGen.topo #Solver bc = np.array([], 'i') bcVal = np.array([], 'i') D = cfc.hooke(1, E, v) nDofs = np.size(dof) ex, ey = cfc.coordxtr(edof, coords, dof) #Coordinates K = np.zeros([nDofs, nDofs]) #Append Boundary Conds f = np.zeros([nDofs, 1]) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 30, 0.0, 0) cfu.applyforce(bdofs, f, 20, 100e3, 1) qs_array = [] qt_array = [] for x, y, z in zip(ex, ey, edof): Ke = cfc.planqe(x, y, ep, D) cfc.assem(z, K, Ke) asolve, r = cfc.solveq(K, f, bc, bcVal) ed = cfc.extractEldisp(edof, asolve) for x, y, z in zip(ex, ey, ed): qs, qt = cfc.planqs(x, y, ep, D, z) qs_array.append(qs) qt_array.append(qt) vonMises = [] stresses1 = [] stresses2 = [] # For each element: for i in range(edof.shape[0]): # Determine element stresses and strains in the element. es, et = cfc.planqs(ex[i, :], ey[i, :], ep, D, ed[i, :]) # Calc and append effective stress to list. vonMises.append( np.sqrt( pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2])) ## es: [sigx sigy tauxy] # sigmaij = np.array([[es(i,1),es(i,3),0],[es(i,3),es(i,2),0],[0,0,0]]) sigmaij = np.array([[es[0], es[2], 0], [es[2], es[1], 0], [0, 0, 0]]) [v, w] = np.linalg.eig(sigmaij) stresses1.append(v[0] * w[0]) stresses2.append(v[1] * w[1]) # --- Överför modell variabler till lokala referenser self.outputData.vonMises = vonMises self.outputData.edof = edof self.outputData.coords = coords self.outputData.stresses1 = stresses1 self.outputData.stresses2 = stresses2 self.outputData.geometry = geometry self.outputData.asolve = asolve self.outputData.r = r self.outputData.ed = ed self.outputData.qs = qs_array self.outputData.qt = qt_array self.outputData.dofsPerNode = dofsPerNode self.outputData.elType = elType self.outputData.calcDone = True