Beispiel #1
0
    def calibrate(self):
        self.calc_min_max_guess()

        if len(self.flt_meas) < 10:
            logging.warning("Not enough measurements")
            return

        cp0, np0 = calibration_utils.scale_measurements(self.flt_meas, self.p0)
        logging.info("initial guess : avg "+str(np0.mean())+" std "+str(np0.std()))
        calibration_utils.print_xml(self.p0, "MAG", 11)

        def err_func(p, meas, y):
            cp, np = calibration_utils.scale_measurements(meas, p)
            err = y * scipy.ones(len(meas)) - np
            return err

        p1, cov, info, msg, success = optimize.leastsq(err_func, self.p0[:], args=(self.flt_meas, 1.0), full_output=1)
        self.optimization_done = success in [1, 2, 3, 4]
        if not self.optimization_done:
            logging.warning("Optimization error: ", msg)

        cp1, np1 = calibration_utils.scale_measurements(self.flt_meas, p1)

        if self.optimization_done:
            logging.info("optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std()))
            calibration_utils.print_xml(p1, "MAG", 11)
        else:
            logging.info("last iteration of failed optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std()))

        if self.plot_results:
            calibration_utils.plot_results("MAG", np.array(self.data), range(len(self.data)),
                                           self.flt_meas, cp0, np0, cp1, np1, 1.0, blocking=False)
            calibration_utils.plot_mag_3d(self.flt_meas, cp1, p1)
Beispiel #2
0
    def calibrate(self):
        self.calc_min_max_guess()

        if len(self.flt_meas) < 10:
            logging.warning("Not enough measurements")
            return

        cp0, np0 = calibration_utils.scale_measurements(self.flt_meas, self.p0)
        logging.info("initial guess : avg "+str(np0.mean())+" std "+str(np0.std()))
        calibration_utils.print_xml(self.p0, "MAG", 11)

        def err_func(p, meas, y):
            cp, np = calibration_utils.scale_measurements(meas, p)
            err = y * scipy.ones(len(meas)) - np
            return err

        p1, cov, info, msg, success = optimize.leastsq(err_func, self.p0[:], args=(self.flt_meas, 1.0), full_output=1)
        self.optimization_done = success in [1, 2, 3, 4]
        if not self.optimization_done:
            logging.warning("Optimization error: ", msg)

        cp1, np1 = calibration_utils.scale_measurements(self.flt_meas, p1)

        if self.optimization_done:
            logging.info("optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std()))
            calibration_utils.print_xml(p1, "MAG", 11)
        else:
            logging.info("last iteration of failed optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std()))

        if self.plot_results:
            calibration_utils.plot_results("MAG", np.array(self.data), range(len(self.data)),
                                           self.flt_meas, cp0, np0, cp1, np1, 1.0, blocking=False)
            calibration_utils.plot_mag_3d(self.flt_meas, cp1, p1)
Beispiel #3
0
def main():
    usage = "usage: %prog [options] log_filename.data" + "\n" + "Run %prog --help to list the options."
    parser = OptionParser(usage)
    parser.add_option("-i", "--id", dest="ac_id",
                      action="store",
                      help="aircraft id to use")
    parser.add_option("-s", "--sensor", dest="sensor",
                      type="choice", choices=["ACCEL", "MAG"],
                      help="sensor to calibrate (ACCEL, MAG)",
                      action="store", default="ACCEL")
    parser.add_option("-p", "--plot",
                      help="Show resulting plots",
                      action="store_true", dest="plot")
    parser.add_option("--noise_threshold",
                      help="specify noise threshold instead of automatically determining it",
                      action="store", dest="noise_threshold", default=0)
    parser.add_option("-v", "--verbose",
                      action="store_true", dest="verbose")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.error("incorrect number of arguments")
    else:
        if os.path.isfile(args[0]):
            filename = args[0]
        else:
            print(args[0] + " not found")
            sys.exit(1)

    if not filename.endswith(".data"):
        parser.error("Please specify a *.data log file")

    if os.path.getsize(filename) == 0:
        print("File specified has no data.")
        sys.exit(1)

    ac_ids = calibration_utils.get_ids_in_log(filename)
    if options.ac_id is None:
        if len(ac_ids) == 1:
            options.ac_id = ac_ids[0]
        else:
            parser.error("More than one aircraft id found in log file. Specify the id to use.")
    if options.verbose:
        print("Using aircraft id "+options.ac_id)

    if options.sensor == "ACCEL":
        sensor_ref = 9.81
        sensor_res = 10
        noise_window = 20
        noise_threshold = options.noise_threshold
    elif options.sensor == "MAG":
        sensor_ref = 1.
        sensor_res = 11
        noise_window = 10
        noise_threshold = 1000

    if options.verbose:
        print("reading file "+filename+" for aircraft "+options.ac_id+" and sensor "+options.sensor)

    # read raw measurements from log file
    measurements = calibration_utils.read_log(options.ac_id, filename, options.sensor)
    if len(measurements) == 0:
        print("Error: found zero IMU_"+options.sensor+"_RAW measurements for aircraft with id "+options.ac_id+" in log file!")
        sys.exit(1)
    if options.verbose:
        print("found "+str(len(measurements))+" records")

    # check that values are not all zero
    if not measurements.any():
        print("Error: all IMU_"+options.sensor+"_RAW measurements are zero!")
        sys.exit(1)

    # estimate the noise threshold if not explicitly given
    if noise_threshold <= 0:
        # mean over all measurements (flattended array) as approx neutral value
        neutral = scipy.mean(measurements)
        # find the median of measurement vector length after subtracting approximate neutral
        meas_median = scipy.median(scipy.array([scipy.linalg.norm(v - neutral) for v in measurements]))
        # set noise threshold to be below 10% of that
        noise_threshold = meas_median * 0.1
    if options.verbose:
        print("Using noise threshold of", noise_threshold, "for filtering.")

    # filter out noisy measurements
    flt_meas, flt_idx = calibration_utils.filter_meas(measurements, noise_window, noise_threshold)
    if options.verbose:
        print("remaining "+str(len(flt_meas))+" after filtering")
    if len(flt_meas) == 0:
        print("Error: found zero IMU_" + options.sensor + "_RAW measurements for aircraft with id " + options.ac_id +
              " in log file after filtering with noise threshold of " + noise_threshold +
              "!\nMaybe try specifying manually with the --noise_threshold option.")
        if options.plot:
            calibration_utils.plot_measurements(options.sensor, measurements)
        sys.exit(1)

    # get an initial min/max guess
    p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)
    cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)
    print("initial guess : avg "+str(np0.mean())+" std "+str(np0.std()))
#    print p0

    def err_func(p, meas, y):
        cp, np = calibration_utils.scale_measurements(meas, p)
        err = y*scipy.ones(len(meas)) - np
        return err

    p1, cov, info, msg, success = optimize.leastsq(err_func, p0[:], args=(flt_meas, sensor_ref), full_output=1)
    optimze_failed = success not in [1, 2, 3, 4]
    if optimze_failed:
        print("Optimization error: ", msg)
        print("Please try to provide a clean logfile with proper distribution of measurements.")
        #sys.exit(1)

    cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)

    if optimze_failed:
        print("last iteration of failed optimized guess : avg "+str(np1.mean())+" std "+str(np1.std()))
    else:
        print("optimized guess : avg "+str(np1.mean())+" std "+str(np1.std()))

    if not optimze_failed:
        calibration_utils.print_xml(p1, options.sensor, sensor_res)

    if options.plot:
        # if we are calibrating a mag, just draw first plot (non-blocking), then show the second
        if options.sensor == "MAG":
            calibration_utils.plot_results(options.sensor, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref, blocking=False)
            calibration_utils.plot_mag_3d(flt_meas, cp1, p1)
        # otherwise show the first plot (blocking)
        else:
            calibration_utils.plot_results(options.sensor, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)
Beispiel #4
0
 def err_func(p, meas, y):
     cp, np = calibration_utils.scale_measurements(meas, p)
     err = y*scipy.ones(len(meas)) - np
     return err
Beispiel #5
0
def main():
    usage = "usage: %prog [options] log_filename.data" + "\n" + "Run %prog --help to list the options."
    parser = OptionParser(usage)
    parser.add_option("-i", "--id", dest="ac_id",
                      action="store",
                      help="aircraft id to use")
    parser.add_option("-s", "--sensor", dest="sensor",
                      type="choice", choices=["ACCEL", "MAG"],
                      help="sensor to calibrate (ACCEL, MAG)",
                      action="store", default="ACCEL")
    parser.add_option("-p", "--plot",
                      help="Show resulting plots",
                      action="store_true", dest="plot")
    parser.add_option("-a", "--auto_threshold",
                      help="Try to automatically determine noise threshold",
                      action="store_true", dest="auto_threshold")
    parser.add_option("-v", "--verbose",
                      action="store_true", dest="verbose")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.error("incorrect number of arguments")
    else:
        if os.path.isfile(args[0]):
            filename = args[0]
        else:
            print(args[0] + " not found")
            sys.exit(1)
    ac_ids = calibration_utils.get_ids_in_log(filename)
    if options.ac_id == None:
        if len(ac_ids) == 1:
            options.ac_id = ac_ids[0]
        else:
            parser.error("More than one aircraft id found in log file. Specify the id to use.")
    if options.verbose:
        print("Using aircraft id "+options.ac_id)

    if options.sensor == "ACCEL":
        sensor_ref = 9.81
        sensor_res = 10
        noise_window = 20;
        noise_threshold = 40;
    elif options.sensor == "MAG":
        sensor_ref = 1.
        sensor_res = 11
        noise_window = 10;
        noise_threshold = 1000;

    if not filename.endswith(".data"):
        parser.error("Please specify a *.data log file")
    if options.verbose:
        print("reading file "+filename+" for aircraft "+options.ac_id+" and sensor "+options.sensor)

    # read raw measurements from log file
    measurements = calibration_utils.read_log(options.ac_id, filename, options.sensor)
    if len(measurements) == 0:
        print("Error: found zero IMU_"+options.sensor+"_RAW measurements for aircraft with id "+options.ac_id+" in log file!")
        sys.exit(1)
    if options.verbose:
       print("found "+str(len(measurements))+" records")

    # estimate the noise threshold
    # find the median of measurement vector lenght
    if options.auto_threshold:
        meas_median = scipy.median(scipy.array([scipy.linalg.norm(v) for v in measurements]))
        # set noise threshold to be below 10% of that
        noise_threshold = meas_median * 0.1
    if options.verbose:
        print("Using noise threshold of", noise_threshold, "for filtering.")

    # filter out noisy measurements
    flt_meas, flt_idx = calibration_utils.filter_meas(measurements, noise_window, noise_threshold)
    if options.verbose:
        print("remaining "+str(len(flt_meas))+" after filtering")
    if len(flt_meas) == 0:
        print("Error: found zero IMU_"+options.sensor+"_RAW measurements for aircraft with id "+options.ac_id+" in log file after filtering!")
        sys.exit(1)

    # get an initial min/max guess
    p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)
    cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)
    print("initial guess : avg "+str(np0.mean())+" std "+str(np0.std()))
#    print p0

    def err_func(p, meas, y):
        cp, np = calibration_utils.scale_measurements(meas, p)
        err = y*scipy.ones(len(meas)) - np
        return err

    p1, success = optimize.leastsq(err_func, p0[:], args=(flt_meas, sensor_ref))
    cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)

    print("optimized guess : avg "+str(np1.mean())+" std "+str(np1.std()))
#    print p1

    calibration_utils.print_xml(p1, options.sensor, sensor_res)
    print("")

    if options.plot:
        # if we are calibrating a mag, just draw first plot (non-blocking), then show the second
        if options.sensor == "MAG":
            calibration_utils.plot_results(False, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)
            calibration_utils.plot_mag_3d(flt_meas, cp1, p1)
        # otherwise show the first plot (blocking)
        else:
            calibration_utils.plot_results(True, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)
Beispiel #6
0
def main():
    usage = "usage: %prog [options] log_filename.data" + "\n" + "Run %prog --help to list the options."
    parser = OptionParser(usage)
    parser.add_option("-i",
                      "--id",
                      dest="ac_id",
                      action="store",
                      help="aircraft id to use")
    parser.add_option("-s",
                      "--sensor",
                      dest="sensor",
                      type="choice",
                      choices=["ACCEL", "MAG"],
                      help="sensor to calibrate (ACCEL, MAG)",
                      action="store",
                      default="ACCEL")
    parser.add_option("-p",
                      "--plot",
                      help="Show resulting plots",
                      action="store_true",
                      dest="plot")
    parser.add_option("-v", "--verbose", action="store_true", dest="verbose")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.error("incorrect number of arguments")
    else:
        if os.path.isfile(args[0]):
            filename = args[0]
        else:
            print(args[0] + " not found")
            sys.exit(1)
    ac_ids = calibration_utils.get_ids_in_log(filename)
    if options.ac_id == None:
        if len(ac_ids) == 1:
            options.ac_id = ac_ids[0]
        else:
            parser.error(
                "More than one aircraft id found in log file. Specify the id to use."
            )
    if options.verbose:
        print("Using aircraft id " + options.ac_id)

    if options.sensor == "ACCEL":
        sensor_ref = 9.81
        sensor_res = 10
        noise_window = 20
        noise_threshold = 40
    elif options.sensor == "MAG":
        sensor_ref = 1.
        sensor_res = 11
        noise_window = 10
        noise_threshold = 1000

    if not filename.endswith(".data"):
        parser.error("Please specify a *.data log file")
    if options.verbose:
        print("reading file " + filename + " for aircraft " + options.ac_id +
              " and sensor " + options.sensor)

    # read raw measurements from log file
    measurements = calibration_utils.read_log(options.ac_id, filename,
                                              options.sensor)
    if len(measurements) == 0:
        print("Error: found zero IMU_" + options.sensor +
              "_RAW measurements for aircraft with id " + options.ac_id +
              " in log file!")
        sys.exit(1)
    if options.verbose:
        print("found " + str(len(measurements)) + " records")

    # filter out noisy measurements
    flt_meas, flt_idx = calibration_utils.filter_meas(measurements,
                                                      noise_window,
                                                      noise_threshold)
    if options.verbose:
        print("remaining " + str(len(flt_meas)) + " after low pass")
    if len(flt_meas) == 0:
        print("Error: found zero IMU_" + options.sensor +
              "_RAW measurements for aircraft with id " + options.ac_id +
              " in log file after low pass!")
        sys.exit(1)

    # get an initial min/max guess
    p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)
    cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)
    print("initial guess : avg " + str(np0.mean()) + " std " + str(np0.std()))

    #    print p0

    def err_func(p, meas, y):
        cp, np = calibration_utils.scale_measurements(meas, p)
        err = y * scipy.ones(len(meas)) - np
        return err

    p1, success = optimize.leastsq(err_func,
                                   p0[:],
                                   args=(flt_meas, sensor_ref))
    cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)

    print("optimized guess : avg " + str(np1.mean()) + " std " +
          str(np1.std()))
    #    print p1

    calibration_utils.print_xml(p1, options.sensor, sensor_res)
    print("")

    if options.plot:
        # if we are calibrating a mag, just draw first plot (non-blocking), then show the second
        if options.sensor == "MAG":
            calibration_utils.plot_results(False, measurements, flt_idx,
                                           flt_meas, cp0, np0, cp1, np1,
                                           sensor_ref)
            calibration_utils.plot_mag_3d(flt_meas, cp1, p1)
        # otherwise show the first plot (blocking)
        else:
            calibration_utils.plot_results(True, measurements, flt_idx,
                                           flt_meas, cp0, np0, cp1, np1,
                                           sensor_ref)
Beispiel #7
0
def main():
    usage = "usage: %prog [options] log_filename"
    parser = OptionParser(usage)
    parser.add_option("-i", "--id", dest="ac_id",
                      action="store",
                      help="aircraft id to use")
    parser.add_option("-s", "--sensor", dest="sensor",
                      help="sensor to calibrate ( ACCEL or MAG)",
                      action="store", default="ACCEL")
    parser.add_option("-v", "--verbose",
                      action="store_true", dest="verbose")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.error("incorrect number of arguments")
    else:
        if os.path.isfile(args[0]):
            filename = args[0]
        else:
            print args[0] + " not found"
            sys.exit(1)
    if options.sensor == "GYRO":
        print "You can't calibate gyros with this!"
        sys.exit(1)
    ac_ids = calibration_utils.get_ids_in_log(filename)
#    import code; code.interact(local=locals())
    if options.ac_id == None and len(ac_ids) == 1:
        options.ac_id = ac_ids[0]
    if options.verbose:
        print "reading file "+filename+" for aircraft "+options.ac_id+" and sensor "+options.sensor
    measurements = calibration_utils.read_log(options.ac_id, filename, options.sensor)
    if options.verbose:
       print "found "+str(len(measurements))+" records"
    if options.sensor == "ACCEL":
        sensor_ref = 9.81
        sensor_res = 10
        noise_window = 20;
        noise_threshold = 40;
    else: # MAG
        sensor_ref = 1.
        sensor_res = 11
        noise_window = 10;
        noise_threshold = 1000;
    flt_meas, flt_idx = calibration_utils.filter_meas(measurements, noise_window, noise_threshold)
    if options.verbose:
        print "remaining "+str(len(flt_meas))+" after low pass"
    p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)
    cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)
    print "initial guess : avg "+str(np0.mean())+" std "+str(np0.std())
#    print p0

    def err_func(p,meas,y):
        cp, np = calibration_utils.scale_measurements(meas, p)
        err = y*scipy.ones(len(meas)) - np
        return err

    p1, success = optimize.leastsq(err_func, p0[:], args=(flt_meas, sensor_ref))
    cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)

    print "optimized guess : avg "+str(np1.mean())+" std "+str(np1.std())
#    print p1

    calibration_utils.print_xml(p1, options.sensor, sensor_res)
    print ""

    calibration_utils.plot_results(measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)
Beispiel #8
0
def main():
    usage = "usage: %prog [options] log_filename"
    parser = OptionParser(usage)
    parser.add_option("-i",
                      "--id",
                      dest="ac_id",
                      action="store",
                      help="aircraft id to use")
    parser.add_option("-s",
                      "--sensor",
                      dest="sensor",
                      help="sensor to calibrate ( ACCEL or MAG)",
                      action="store",
                      default="ACCEL")
    parser.add_option("-v", "--verbose", action="store_true", dest="verbose")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.error("incorrect number of arguments")
    else:
        if os.path.isfile(args[0]):
            filename = args[0]
        else:
            print args[0] + " not found"
            sys.exit(1)
    ac_ids = calibration_utils.get_ids_in_log(filename)
    #    import code; code.interact(local=locals())
    if options.ac_id == None and len(ac_ids) == 1:
        options.ac_id = ac_ids[0]
    if options.verbose:
        print "reading file " + filename + " for aircraft " + options.ac_id + " and sensor " + options.sensor
    measurements = calibration_utils.read_log(options.ac_id, filename,
                                              options.sensor)
    if options.verbose:
        print "found " + str(len(measurements)) + " records"
    if options.sensor == "ACCEL":
        sensor_ref = 9.81
        sensor_res = 10
        noise_window = 20
        noise_threshold = 40
    else:  # MAG
        sensor_ref = 1.
        sensor_res = 11
        noise_window = 10
        noise_threshold = 1000
    flt_meas, flt_idx = calibration_utils.filter_meas(measurements,
                                                      noise_window,
                                                      noise_threshold)
    if options.verbose:
        print "remaining " + str(len(flt_meas)) + " after low pass"
    p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)
    cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)
    print "initial guess : avg " + str(np0.mean()) + " std " + str(np0.std())

    #    print p0

    def err_func(p, meas, y):
        cp, np = calibration_utils.scale_measurements(meas, p)
        err = y * scipy.ones(len(meas)) - np
        return err

    p1, success = optimize.leastsq(err_func,
                                   p0[:],
                                   args=(flt_meas, sensor_ref))
    cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)

    print "optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std())
    #    print p1

    calibration_utils.print_xml(p1, options.sensor, sensor_res)
    print ""

    calibration_utils.plot_results(measurements, flt_idx, flt_meas, cp0, np0,
                                   cp1, np1, sensor_ref)