Beispiel #1
0
 def solve(self):
     # 等效跨径计算
     self._m1 = True # 使用算法一
     if self.span_type == 'Simple':
         self.Lc = self.L1
         self._eq1 = 'L1'
         self._m1 = True if self.location_simple == 'Span' else False
     elif self.span_type == 'Continous':
         if self.location_continous == 'SideSupport':
             self.Lc = 0.8*self.L1
             self._eq1 = '0.8*L1'
             self._m1 = False
         elif self.location_continous == 'MiddleSupport':
             self.Lc = 0.2*(self.L1+self.L2)
             self._eq1 = '0.2*(L1+L2)'
         elif self.location_continous == 'SideSpan':
             self.Lc = 0.8*self.L1
             self._eq1 = '0.8*L1'
         elif self.location_continous == 'MiddleSpan':
             self.Lc = 0.6*self.L2
             self._eq1 = '0.6*L2'
         else:
             raise InputError(self, 'location_continous', '不支持的参数值')
     else:
         raise InputError(self, 'span_type', '不支持的参数值')
     self.bc1 = min(self.Lc/6, self.b1)
     self.bc2 = min(self.Lc/6, self.b2)
     if self._m1:
         self.bc = self.b0+self.bc1+self.bc2
     else:
         self.validate('positive', 'b1', 'b2')
         self.β1 = min(0.55+0.025*self.Lc/self.b1,1.0)
         self.β2 = min(0.55+0.025*self.Lc/self.b2,1.0)
         self.bc = self.b0+self.β1*self.bc1+self.β2*self.bc2
Beispiel #2
0
 def solve(self):
     if self.location == 'middle_support':
         self.validate('positive', 'l1', 'l2')
     else:
         self.validate('positive', 'l')
     if self.section == 'I':
         bf_1 = None
         if self.beam_type == 'simple':
             bf_1 = self.l/3
         elif self.beam_type == 'continuous':
             if self.location == 'side_span':
                 bf_1 = 0.27*self.l
             elif self.location == 'middle_span':
                 bf_1 = 0.2*self.l
             elif self.location == 'middle_support':
                 bf_1 = 0.07*(self.l1+self.l2)
             else:
                 raise InputError(self, 'location', '不支持的截面位置')
         bf_2 = self.da
         bf_3 = self.b+2*min(self.bh, 3*self.hh)+12*self.hf_
         self.bfi = min(bf_1, bf_2, bf_3) if bf_1 else min(bf_2, bf_3)
         self.bfo = self.bfi/2+self.b/2+min(self.ha_o, self.bm_o)
     elif self.section == 'box':
         if self.beam_type == 'simple':
             self.li = self.l
         elif self.beam_type == 'continuous':
             if self.location == 'side_span':
                 self.li = 0.8*self.l
             elif self.location == 'side_support':
                 self.li = 0.8*self.l
             elif self.location == 'middle_span':
                 self.li = 0.6*self.l
             elif self.location == 'middle_support':
                 self.li = 0.2*(self.l1+self.l2)
             else:
                 raise InputError(self, 'location', '不支持的截面位置')
         elif self.beam_type == 'cantilever':
             self.li = 1.5*self.l
         else:
             raise InputError(self, 'beam_type', '不支持的梁类型')
         ratio = self.bi/self.li
         if ratio < 0.7:
             self.ρf = -6.44*ratio**4+10.10*ratio**3-3.56*ratio**2-1.44*ratio+1.08
             self.ρs = 21.86*ratio**4-38.01*ratio**3+24.57*ratio**2-7.67*ratio+1.27
             if self.ρf > 1:
                 self._ρf = self.ρf
                 self.ρf = 1
             if self.ρs > 1:
                 self._ρs = self.ρs
                 self.ρs = 1
         else:
             self.ρf = 0.247
             self.ρs = 0.148
         self.bmif = self.ρf*self.bi
         self.bmis = self.ρs*self.bi
         if self.h >= self.bi/0.3:
             self.bmif = self.bmis = self.bi
         self.ratio = ratio
     else:
         raise InputError(self, 'section', '不支持的截面形状')
 def solve(self):
     none_zeros = list(self.__inputs__.keys())
     none_zeros.remove('Nl')
     none_zeros.remove('Ml')
     self.none_zero_check(
         *none_zeros)  #('r', 'rs', 'l', 'l0', 'As', 'C', 'd')
     if self.Ns == 0:  # 受弯构件
         raise InputError(self, 'Ns', 'JTG规范不支持圆形截面受弯构件裂缝宽度计算')
     if self.Ms == 0:  # 受压构件
         raise InputError(self, 'Ms', 'JTG规范不支持圆形截面轴心受压(拉)构件裂缝宽度计算')
     self.C2 = 1 + 0.5 * self.Nl / self.Ns
     if self.Ms > 0:
         self.C2 = max(self.C2, 1 + 0.5 * self.Ml / self.Ms)
     self.e0 = self.Ms / self.Ns * 1e3
     return self.solve_Wtk() if self.option == 'review' else self.solve_As()
Beispiel #4
0
    def solve(self):
        self.validate('positive', 'a', 'hw')
        op = {
            'Q235': [[70, 0, 0], [160, 280, 310]],
            'Q345': [[60, 0, 0], [140, 240, 310]]
        }
        if not self.steel in op:
            # raise InputError(self, 'steel', '不支持的类型')
            # 规范有遗漏,未给出其它钢材品种的取值说明,计算时标号大于Q345的按Q345取值
            self.steel = 'Q345'
        nt = min(int(self.nt), 1)
        nl = min(int(self.nl), 2)
        self.C = op[self.steel][nt][nl]
        if self.C <= 0:
            raise InputError(self, 'nt', '设置纵向加劲肋时,需同时设置横向加劲肋')
        self.η, self.tw_min = self.web_thick(self.τ, self.fvd, self.hw, self.C)

        opC1 = [345, 900, 3000]
        opC2 = {True: [77, 120, 187], False: [58, 90, 140]}
        opC3 = [1, 0.8, 0.64]
        self.C1 = opC1[nl]
        bl = self.a / self.hw > opC3[nl]
        self.C2 = opC2[bl][nl]
        self.eql = self.rib_space(self.a, self.hw, self.tw, self.σ, self.τ,
                                  self.fvd, self.C1, self.C2)

        self.It_min = self.fIt(self.hw, self.tw)

        self.ξl = self._ξl = self.fξl(self.a, self.hw)
        if self.ξl < 1.5:
            self.ξl = 1.5
        self.Il_min = self.fIl(self.ξl, self.hw, self.tw)
Beispiel #5
0
 def _get_end_layer_num(self):
     '''获取持力层所在的层号'''
     l = 0
     for i in range(len(self.li)):
         l += self.li[i]
         if l > self.L:
             return i
     raise InputError(self, 'L', '桩长不能大于土层厚度之和')
Beispiel #6
0
 def solve(self):
     self.validate('non-negative', 'υ', 'nl')
     if self.υ >= 1:
         raise InputError(self, 'υ', '应<1')
     self.Il,self.It,self.D,self.γl,self.γt,self.n,self.α0,\
     self.α,self.Asl,self.δl,self.γl_,self.Asl_min,self.γt_min = \
     self.fsolve(self.E,self.υ,self.a,self.b,self.t,self.hl,self.tl,self.ht,self.tt,self.nl,self.at)
     self.k = self.fk(self.α, self.α0, self.γl, self.δl, self.n,
                      self.γl >= self.γl_)
Beispiel #7
0
 def _seperate(param:str):
     a = getattr(self, param)
     if a == None:
         return None
     if isinstance(a, float) or isinstance(a, int):
         ax = ay = a
     elif isinstance(a, tuple) or isinstance(a, list):
         n = len(a)
         if n >0 and n < 1:
             ax = ay = a
         elif n > 1:
             ax = a[0]
             ay = a[1]
         else:
             raise InputError(self,param,'无法识别的输入')
     else:
         raise InputError(self,param,'无法识别的输入')
     return (ax, ay)
Beispiel #8
0
 def solve(self):
     self.validate('non-negative', 'b', 'd', 'i')
     if self.b <= 0 and self.d <= 0 and self.i <= 0:
         raise InputError(self, 'i', '请输入b,d,i任意一项的值')
     self.φ = axial_compression._phi(self.l0, self.b, self.d, self.i)
     self.Nu = axial_compression.fNu(self.φ, self.fc, self.A, self.fy_,
                                     self.As_) * 1e-3
     self.轴压比 = axial_compression.compression_ratio(self.N, self.A,
                                                    self.fc) * 1e3
Beispiel #9
0
    def solve_Rt(self):
        self.validate('positive', 'L', 'u', 'Ap')  # , 'm0', 'λ', 'k2', 'γ2'

        def _to_list(param):
            if hasattr(param, '__len__') and not isinstance(param, str):
                return param
            else:
                return [param]

        self.layers = _to_list(self.layers)
        self.li = _to_list(self.li)
        self.qik = _to_list(self.qik)

        # 判断列表参数的元素个数是否一致
        n = len(self.layers)
        for item in ('li', 'qik'):
            attr = getattr(self, item)
            if len(attr) != n:
                raise InputError(self, item, '元素个数与土层名称个数不一致')

        if self.L > sum(self.li):
            raise InputError(self, 'L', '桩长不能大于土层厚度之和')
        rt = 0  # 竖向承载力(kN)

        ls = 0
        _αi_is_array = isinstance(self.αi, list) or isinstance(self.αi, tuple)
        if _αi_is_array:
            if len(self.αi) < n:
                raise InputError(self, 'αi', '元素个数与土层名称个数不一致')
        for i in range(len(self.li)):
            αi = self.αi[i] if _αi_is_array else self.αi
            if ls + self.li[i] < self.L:
                rt += αi * self.qik[i] * self.li[i]
            elif ls < self.L:
                rt += αi * self.qik[i] * (self.L - ls)
                break
            else:
                break
            ls += self.li[i]
        self.Rt = 0.3 * self.u * rt
        self.R = self.R0 - self.γc * self.L * self.Ap
        self.K = self.Rt / self.R
        return rt
Beispiel #10
0
 def solve(self):
     sum = 0
     xs = []
     xs.append(sum)
     for span in self.spans:
         sum += span
         xs.append(sum)
     ks = []
     I_is_list = isinstance(self.I, list) or isinstance(self.I, tuple)
     l_is_list = isinstance(self.I, list) or isinstance(self.I, tuple)
     kb_is_list = isinstance(self.kb, list) or isinstance(self.kb, tuple)
     if kb_is_list:
         for ki in self.kb:
             if ki == 0:
                 raise InputError(self, 'kb', '支座刚度应大于0')
     for i in range(len(xs)):
         # 支座刚度
         kb = self.kb[i] if kb_is_list else self.kb
         # 桥墩刚度
         if self.option == 'A':
             nkp = len(self.kp)
             kp = self.kp[i] if i < nkp else self.kp[nkp - 1]
             if kp <= 0:
                 raise InputError(self, 'kp', '应 &gt; 0')
         elif self.option == 'B':
             I = self.I[i] if I_is_list else self.I
             l = self.l[i] if l_is_list else self.I
             kp = 3 * self.E * I / l**3
             if i < len(self.kp):
                 self.kp[i] = kp
             else:
                 self.kp.append(kp)
         else:
             raise InputError(self, 'option', '不支持的选项')
         k = kb * kp / (kb + kp)
         ks.append(k)
     # 温度作用水平力分配
     self.xsp, self.move_status, self.Fs = self.temperature_force_distribution(
         xs, ks, self.Ws, self.fixeds, self.Δt, self.α, self.μ)
     self.xs = xs
     self.ks = ks
     return
Beispiel #11
0
 def solve(self):
     if self.t < self.ts:
         raise InputError(self, 't', '不满足t>=ts')
     self.fcm = 0.8 * self.fcuk + 8
     if self.option == '0':
         self.εcs0, self.βRH = self.fεcs0(self.fcm, self.RH, self.βsc)
     else:
         self.εcs0 = 0.529e-3 if self.RH < 70 else 0.310e-3
         if self.fcuk > 50:
             self.εcs0 = self.εcs0 * sqrt(32.4 / self.fck)
     self.εcs, self.βsΔt = self.fε(self.t, self.ts, self.h, self.εcs0)
Beispiel #12
0
 def init_params(self):
     ''' 初始化基本计算参数 '''
     self.a = self.a_s if self.Ap <= 0 else \
         (self.fy*self.As*self.a_s+self.fpy*self.Ap*self.ap)/(self.fy*self.As+self.fpy*self.Ap)
     self.a_ = self.as_ if self.Ap_ <= 0 else \
         (self.fy_*self.As_*self.a_s+(self.fpy_-self.σp0_)*self.Ap_*self.ap_)\
             /(self.fy_*self.As_+(self.fpy_-self.σp0_)*self.Ap_)
     self.h0 = self.h - self.a
     if self.h0 <= 0:
         raise InputError(self, 'h', '截面高度不足,或受拉钢筋距边缘距离过大,导致截面有效高度为负')
     self.ξb = self.f_ξb()
     self.xb = self.ξb * self.h0
Beispiel #13
0
 def solve(self):
     self.validate('non-negative', 'l0')
     self.validate('positive', 'C0', 'Ec', 'd')
     self.I = pi * self.d**4 / 64
     self.I0 = self.I
     self.npiles = sum(self.Ki)  # 总桩数
     if self.npiles <= 0:
         raise InputError(self, 'Ki', '桩数应>0')
     self.n = len(self.xi) if hasattr(self.xi,
                                      '__len__') else 1  # 平行于水平力作用方向的一排桩的桩数
     if self.ξ <= 0:
         self.ξ = 1 if self.bottom_fixed else 0.5
     self.solveP06()
Beispiel #14
0
 def solve(self):
     if self.α < 0 or self.α >= 90:
         raise InputError(self, 'α', '应0 &le; α &lt; 90')
     self.ξ, self.sep = earth_pressure.static_earth_pressure(
         self.φ * pi / 180, self.B, self.γ, self.H)
     φ = self.φ * pi / 180
     α = self.α * pi / 180
     self.μ, self.aep, self.C = self.active_earth_pressure(
         φ, α, self.β * pi / 180, self.B, self.γ, self.H)
     if self.G > 0:
         self.l0, self.h, self.aep, self.C = self.active_earth_pressure_live(
             φ, α, self.B, self.γ, self.H, self.G)
         self.q = self.μ * self.γ * self.h
Beispiel #15
0
 def solve(self):
     self.validate('positive','As','Is','Es','Ac','Ic','Ec')
     self.n0 = self.Es/self.Ec
     # 混凝土收缩
     if self.load_type == '1':
         # self.solve_deadload()
         self.ψL = 1.1
         self.nL = self.n0*(1+self.ψL*self.φ)
         self.solve_section_properties()
         self.Ecgφ = self.fEcφ(self.Ec, self.ψL, self.φ)
         self.P0  = self.fP0g(self.Ecgφ,self.Ac,self.ε0,self.φ)
     elif self.load_type == '2':
         # self.solve_shrinkage()
         self.ψL = 0.55
         self.nL = self.n0*(1+self.ψL*self.φ)
         self.solve_section_properties()
         self.Ecsφ = self.fEcφ(self.Ec, self.ψL, self.φ)
         εsh = self.εsh
         if εsh>0:
             εsh = -εsh
         self.P0  = self.fP0sh(self.Ecsφ,self.Ac,εsh*self.ξ)
     elif self.load_type == '3':
         # self.solve_temperature()
         self.ψL = 0
         self.nL = self.n0
         self.solve_section_properties()
         if self.temperature_type == '1':
             self.P0 = self.fP0t(self.Ac,self.Ec,self.αc,self.αs,self.Δt)
         elif self.temperature_type == '2':
             self.P0 = self.fP0t2(self.Ac,self.Ec,self.αc,self.αs,self.ts,self.tc)
         else:
             raise InputError(self, 'temperature_type', '梯形温差计算尚未实现')
     else:
         raise InputError(self, 'load_type', '不支持的荷载类型')
     self.M0 = self.P0*self.y0c
     self.Δσc = self.fΔσc(self.P0,self.M0,self.nL,self.A0L,self.I0L,self.Ac,self.y0Lc)
     self.Δσs = self.fΔσs(self.P0,self.M0,self.A0L,self.I0L,self.Ac,self.y0Ls)
     self.Pc = self.fPc(self.P0,self.M0,self.nL,self.A0L,self.I0L,self.Ac,self.S0c)
     self.Ps = self.fPs(self.P0,self.M0,self.A0L,self.I0L,self.As,self.S0s)
Beispiel #16
0
 def solve(self):
     self.validate('positive', 'fy', 'E', 'k')
     self.λp, self.ε0, self.ρip = self.fρ(self.bp, self.t, self.fy, self.E,
                                          self.k)
     self.beip = self.ρip * self.bi
     if self.beam_type == 'simple':
         self.validate('positive', 'L')
         option = 'A'
         self.l = self.L
     elif self.beam_type == 'continuous':
         option = 'A' if (self.location == 'side_span'
                          or self.location == 'middle_span') else 'B'
         if self.location == 'side_span':
             self.validate('positive', 'L1')
             self.l = 0.8 * self.L1
         elif self.location == 'middle_span':
             self.validate('positive', 'L2')
             self.l = 0.6 * self.L2
         elif self.location == 'middle_support':
             self.validate('positive', 'L1', 'L2')
             self.l = 0.2 * (self.L1 + self.L2)
         else:
             raise InputError(self, 'location', '未知的输入参数')
     elif self.beam_type == 'cantilever':
         option = 'A'
         if self.location == 'side_span':
             self.validate('positive', 'L1')
             self.l = 2 * self.L1
         elif self.location == 'middle_span':
             self.validate('positive', 'L2')
             self.l = 0.6 * self.L2
         elif self.location == 'middle_support':
             self.validate('positive', 'L1')
             self.l = 2 * self.L1
         else:
             raise InputError(self, 'location', '未知的输入参数')
     self.beis = self.fbeis(self.bi, self.l, option)
     self.ρis = self.beis / self.bi
     self.bei = self.ρis * self.beip
Beispiel #17
0
    def solve(self):
        self.validate('positive', 'N', 'b', 'd')
        N = self.N
        Mx = self.Mx
        My = self.My
        b = self.b
        d = self.d
        γR = self.γR
        fa = self.fa
        A = self.A = b * d
        Wx = self.Wx = b * d**2 / 6
        Wy = self.Wy = d * b**2 / 6
        self.p = N / A  # (4.2.2-1)
        self.eqr = γR * fa
        ex = self.ex = My / N
        ey = self.ey = Mx / N
        pmin = self.pmin = N / A - Mx / Wx - My / Wy
        self.e0 = e0 = sqrt(ex**2 + ey**2)
        if e0 == 0:
            # 只承受轴心荷载
            return
        self.ρ = e0 / (1 - pmin * A / N)

        # 偏心距验算
        self.ξ = 1
        if self.地基条件 == 'a':
            if self.作用情况 == 'a':
                self.ξ = 0.1 if self.墩台类型 == 'a' else 0.75
        elif self.地基条件 == 'b':
            self.ξ = 1.2
        elif self.地基条件 == 'c':
            self.ξ = 1.5
        else:
            raise InputError(self, '地基条件')
        self.e0_max = self.ξ * self.ρ
        self.ecc_ok = self.e0 <= self.e0_max

        # 基底承载力验算
        self.status = 0
        if e0 > self.ρ:  # 应力重分布
            if ex != 0 and ey != 0:  # 双向偏压
                self.pmax = self.λ * N / A
                self.status = 2
            elif ey == 0:  # 单向偏压
                self.pmax = 2 * N / 3 / (b / 2 - ex) / d
                self.status = 1
            elif ex == 0:  # 单向偏压
                self.pmax = 2 * N / 3 / (d / 2 - ey) / b
                self.status = 1
        else:  # 不发生重分布
            self.pmax = N / A + Mx / Wx + My / Wy
Beispiel #18
0
    def solve(self):
        self.validate('non-negative', 'l0')
        self.validate('positive', 'C0', 'Ec', 'd')
        self.I = pi * self.d**4 / 64
        self.I0 = self.I

        self.n = len(self.xi) if hasattr(self.xi,
                                         '__len__') else 1  # 平行于水平力作用方向的一排桩的桩数

        if isinstance(self.Ki, (int, float)):
            if self.n > 0:
                self.Ki = [self.Ki for i in range(self.n)]
        elif isinstance(self.Ki, (tuple, list)):
            if len(self.Ki) != self.n:
                raise InputError(self, 'Ki', '数目与xi不对应')

        self.npiles = sum(self.Ki)  # 总桩数
        if self.npiles <= 0:
            raise InputError(self, 'Ki', '桩数应>0')

        if self.ξ <= 0:
            self.ξ = 1 if self.bottom_fixed else 0.5
        self._solve()
Beispiel #19
0
 def solve(self):
     self.validate('positive', 'fy')
     self.eql = self.hs / self.ts
     if self.type == '1':
         self.eqr = 12 * sqrt(345 / self.fy)
     elif self.type == '2':
         self.eqr = 30 * sqrt(345 / self.fy)
         self.eql2 = self.bs0 / self.ts
         self.eqr2 = 12 * sqrt(345 / self.fy)
     elif self.type == '3':
         self.eqr = 18 * sqrt(345 / self.fy)
     elif self.type == '4':
         self.eqr = 40 * sqrt(345 / self.fy)
         self.eql2 = self.bs / self.ts
         self.eqr2 = 30 * sqrt(345 / self.fy)
     else:
         raise InputError(self, 'type', '不支持的类型')
Beispiel #20
0
 def bottom_force(cls, load, H):
     '''
     计算柱底荷载
     load:荷载
     H:柱高
     '''
     loadtype = load[0]
     h = load[1]
     if h<0:
         h = abs(h)
         if h > 1:
             raise InputError(cls, 'loads', '相对长度绝对值不能大于1')
         h = h*H
     f = wrapforces(load[2])
     f.Mz += f.Fy*h
     f.My += f.Fz*h
     return (loadtype, f.forces)
Beispiel #21
0
 def solve_As(self):
     '''计算普通钢筋面积,已知弯矩,按单筋截面计算,暂未考虑受压钢筋和预应力筋'''
     self.validate('positive', 'α1', 'fc', 'b')
     self.delta = self.h0**2 - 2 * self.γ0 * self.M * 1E6 / self.α1 / self.fc / self.b
     if self.delta > 0:
         self.x = self.h0 - sqrt(self.delta)
         self.ξb = self.f_ξb()
         self.xb = self.ξb * self.h0
         if self.x < self.xb:
             self.As = self.α1 * self.fc * self.b * self.x / self.fy
             return self.As
         else:
             self.εcu = self.f_εcu()
             self.σs = self.Es * self.εcu * (self.β1 * self.h0 / self.x - 1)
             if self.σs < 0:
                 raise InputError(self, 'h0', '截面受压区高度过大,钢筋出现压应力,弯矩无法平衡\n')
             else:
                 self.As = self.α1 * self.fc * self.b * self.x / self.σs
                 return self.As
Beispiel #22
0
 def solve(self):
     self.validate('positive', 'Bu', 'tD')
     self.Ifu = self.tu * (self.Bu + 2 * self.b1)**3 / 12
     self.Ifl = self.tl * (self.Bl + 2 * self.b2)**3 / 12
     self.e, self.f, self.α1, self.α2, self.Idw, self.Kmin = self.fKmin(
         self.E, self.Ld, self.Ifu, self.Ifl, self.Bu, self.Bl, self.Fu,
         self.Fl, self.Fh, self.H, self.b1, self.b2)
     if self.option == '1':
         self.validate('positive', 'A')
         self.K = self.fK1(self.G, self.Ac, self.tD)
         self.τu, self.τh, self.τl = self.fτ1(self.Bu, self.Bl, self.tD,
                                              self.A, self.Td * 1e6)
     elif self.option == '2':
         self.validate('positive', 'A', 'Ab')
         self.K = self.fK2(self.E, self.Ac, self.Ab, self.Lb, self.shape)
         self.Nb = self.fNb(self.Lb, self.A, self.Td, self.shape)
         self.σ = self.Nb / self.Ab
     elif self.option == '3':
         self.validate('positive', 'b', 'h', 'Iu', 'Il', 'Ih')
         self.K = self.fK3(self.β, self.E, self.b, self.h, self.Iu, self.Il,
                           self.Ih)
     else:
         raise InputError(self, 'option', '不支持的选项值')
Beispiel #23
0
    def solve_Ra(self):
        self.positive_check('L', 'u', 'Ap', 'γ2')

        def _to_list(param):
            if hasattr(param, '__len__') and not isinstance(param, str):
                return param
            else:
                return [param]

        self.layers = _to_list(self.layers)
        self.li = _to_list(self.li)
        self.qik = _to_list(self.qik)
        self.frk = _to_list(self.frk)
        self.status = _to_list(self.status)

        # 判断列表参数的元素个数是否一致
        n = len(self.layers)
        for item in ('li', 'qik', 'frk', 'status'):
            attr = getattr(self, item)
            if len(attr) != n:
                raise InputError(self, item, '元素个数与土层名称个数不一致')

        if self.L > sum(self.li):
            raise InputError(self, 'L', '桩长不能大于土层厚度之和')

        endlayer = self._get_end_layer_num()

        frk = self.frk[endlayer]
        if frk > 2000 and frk < 15000:
            self.ζs = 0.8
        elif frk < 30000:
            self.ζs = 0.5
        elif frk > 30000:
            self.ζs = 0.2
        else:
            self.ζs = 1
        typeγ = type(self.γ2)
        bl = typeγ is list or typeγ is tuple
        ls = 0
        ra = 0  # 竖向承载力(kN)
        γl = 0  # 土层重度*土层厚度之和
        Nn = 0  # 负摩阻力(kN)
        # 负摩阻力计算,条文说明5.3.2节
        if self.option:
            if self.ln >= sum(self.li):
                raise InputError(self, 'ln', '不能超过土层厚度之和')
            if self.ln > self.L:
                raise InputError(self, 'ln', '中性点深度不能大于桩长')
            for i in range(len(self.li)):
                if ls < self.ln:
                    if ls + self.li[i] < self.ln:
                        if bl:
                            γl += self.li[i] * self.γ2[i]
                            γi_ = γl / (ls + self.li[i])
                        else:
                            γi_ = self.γ2 - 10
                    else:
                        if bl:
                            γl += (self.ln - ls) * self.γ2[i]
                            γi_ = γl / self.ln
                        else:
                            γi_ = self.γ2 - 10
                    zi = ls + self.li[i] / 2  # 第i层土中点深度
                    σvi_ = self.p + γi_ * zi
                    qni = self.β * σvi_
                    Nn += self.u * qni * self.li[i]
                else:
                    break
                ls += self.li[i]
        # 承载力计算
        table_c1 = self.table_c1
        table_c2 = self.table_c2
        # 表5.3.4附注第2条
        if self.method == 'drill':
            table_c1 = [0.8 * c1 for c1 in table_c1]
            table_c2 = [0.8 * c1 for c1 in table_c2]
        # 表5.3.4附注第3条
        if '中风化' in self.layers[endlayer]:
            table_c1 = [0.75 * c1 for c1 in table_c1]
            table_c2 = [0.75 * c1 for c1 in table_c2]
        ls = 0
        for i in range(len(self.li)):
            if self.option and ls + self.li[i] <= self.ln:
                ls += self.li[i]
                continue
            index = self.status[i]
            if index > 2 or index < -1:
                raise InputError(self, 'status', '输入值超出合理范围')
            c2 = table_c2[index]
            if ls + self.li[i] < self.L:
                if bl:
                    γl += self.li[i] * self.γ2[i]
                if self.status[i] == -1:
                    ra += 0.5 * self.ζs * self.u * self.qik[i] * self.li[i]
                else:
                    # ra += self.u*c2*self.frk[i]*self.li[i]
                    # TODO:需考虑折减,暂时简单处理
                    ra += self.u * c2 * self.frk[i] * self.li[i]
            elif ls < self.L:
                if bl:
                    γl += (self.ln - ls) * self.γ2[i]
                self.γ2 = γl / self.L if bl else self.γ2
                c1 = table_c1[self.status[i]]
                # 表5.3.4附注第1条
                if (self.L - ls) <= 0.5:
                    c1 = 0.75 * c1
                    c2 = 0
                ra += self.u * c2 * self.frk[i] * (self.L - ls)
                ra += c1 * self.Ap * self.frk[i]
                self.c1 = c1
                break
            else:
                break
            ls += self.li[i]
        self.Ra = ra - Nn
        self.Nn = Nn
        self.R = self.R0 + (self.γc - self.γ2) * self.L * self.Ap
        self.K = self.Ra / self.R
        return self.Ra
Beispiel #24
0
    def solveP06(self):
        d = self.d
        h = self.h
        hc = self.hc
        l0 = self.l0
        kf = self.kf
        Ec = self.Ec * 1e3
        I = self.I
        I0 = self.I0
        m = self.m
        C0 = self.C0
        bottom_fixed = self.bottom_fixed
        ξ = self.ξ
        xi = self.xi
        ψ = self.ψ
        Ki = self.Ki
        P = self.P
        H = self.H
        M = self.M
        A = pi / 4 * self.d**2  # 入土部分桩的平均截面积
        S = 0
        for i in range(1, len(xi)):
            Si = abs(xi[i] - xi[i - 1])
            if S <= 0 or S < Si:
                S = Si
        L1 = S - d
        if L1 <= 0:
            raise InputError(self, 'd', '桩径不能大于桩距')

        # 规范中h1在P.0.1、P.0.2、P.0.3中的意义各不相同,全局h1取P.0.3中的意义,其余加后缀_P0N以示区别
        h1_P01 = min(3 * (d + 1), h)
        n = self.n
        b2 = 1.0 if n <= 1 else 0.6 if n <= 2 else 0.5 if n <= 3 else 0.45
        k = 1 if L1 >= 0.6 * h1_P01 else b2 + (1 - b2) / 0.6 * L1 / h1_P01
        b1 = self.f_b1(k, kf, d)
        E = 0.8 * Ec
        α = self.f_α(m, b1, E, I)
        kh = C0 / (α * E) * I0 / I
        # 系数查表P.0.8
        αh = α * h  # round(α*h, 1)
        if αh > 4:
            αh = 4
        δHH0, δMH0, δHM0, δMM0 = pile_effects.fδ0(α, αh, E, I, kh,
                                                  bottom_fixed)
        δHH = l0**3 / (3 * E * I) + δMM0 * l0**2 + 2 * δMH0 * l0 + δHH0
        δMH = l0**2 / (2 * E * I) + δMM0 * l0 + δMH0
        δHM = l0**2 / (2 * E * I) + δMM0 * l0 + δHM0
        δMM = l0 / (E * I) + δMM0

        A0 = min(pi * (d / 2 + h * tan(ψ / 4))**2, pi / 4 * S**2)
        ρPP = 1 / ((l0 + ξ * h) / E / A + 1 / C0 / A0)
        ρHH = δMM / (δHH * δMM - δMH**2)
        ρMH = ρHM = δMH / (δHH * δMM - δMH**2)
        ρMM = δHH / (δHH * δMM - δMH**2)

        n = self.npiles
        if l0 > 0:
            γcc = n * ρPP
            γaa = n * ρHH
            γaβ = γβa = -n * ρHM
            γββ = n * ρMM + ρPP * sum([K * x**2 for (K, x) in zip(Ki, xi)])
        else:
            # 当地面或局部冲刷线在承台底以上时,承台周围土视作弹性介质,此时,形常数按下列公式计算:
            cc = m * hc
            Fc = cc * hc / 2
            Sc = cc * hc**2 / 6
            Ic = cc * hc**3 / 12
            γcc = n * ρPP
            γaa = n * ρHH + b1 * Fc
            γaβ = γβa = -n * ρHM + b1 * Sc
            γcβ = γβc = ρPP * sum([K * x for (K, x) in zip(Ki, xi)])
            γββ = n * ρMM + ρPP * sum([K * x**2
                                       for (K, x) in zip(Ki, xi)]) + b1 * Ic

        # 承台变位
        c = P / γcc
        a = (γββ * H - γaβ * M) / (γaa * γββ - γaβ**2)
        β = (γaa * M - γaβ * H) / (γaa * γββ - γaβ**2)

        # 桩顶作用效应
        Ni = [(c + β * x) * ρPP for x in xi]
        Qi = a * ρHH - β * ρHM
        Mi = β * ρMM - a * ρMH
        self.Ni = Ni
        self.Qi = Qi
        self.Mi = Mi

        # 地面或局部冲刷线处桩顶截面上的作用“力”
        self.H0 = Qi
        self.M0 = Mi + Qi * l0

        self.α = α
        self.γcc = γcc
        self.γaa = γaa
        self.γaβ = γaβ
        self.γβa = γβa
        self.γββ = γββ
        if l0 <= 0:
            self.γcβ = γcβ
            self.γβc = γβc
        self.c = c
        self.a = a
        self.β = β
        self.L1 = L1
        self.S = S
        self.b2 = b2
Beispiel #25
0
    def solve(self):
        self.positive_check('As')

        xi = [x*1000 for x in self.xi] if hasattr(self.xi, '__len__') else [self.xi*1000]
        yi = [y*1000 for y in self.yi] if hasattr(self.yi, '__len__') else [self.yi*1000]

        pvf = cap.pile_vertical_force(**self.inputs)
        pvf.solve()
        Nd = pvf.fNid
        n = pvf.npile
        nx = pvf.nx
        ny = pvf.ny

        self.Nids = []
        for ix in range(nx):
            row = []
            for iy in range(ny):
                _Nd = Nd(ix, iy)
                row.append(_Nd)
                print(_Nd)
            self.Nids.append(row)
              
        self.fc_beams = []
        self.Rstx = [] # 设计方法:单梁0, 拉压杆1;Cu
        self.Rsty = []
        a = 0.15*self.h0 # 压杆中线与承台顶面的交点至墩台边缘的距离
        for o in ['x', 'y']: # 分别计算平行于x轴方向和平行于y轴方向的弯曲
            li = xi if o == 'x' else yi
            As = self.As
            if isinstance(As, (tuple, list)):
                if len(As) > 1:
                    As = self.As[0] if o == 'x' else self.As[1]
                elif len(As) > 0:
                    As = self.As[0]
                else:
                    raise InputError(self, 'As', '不能为空')
            # 对于撑杆系杆模型,只算最外排桩;对于梁模型,只算最大的截面
            for i in [0, len(li)-1]:
                # 计算第i排桩
                x = abs(li[i]) - (self.bx if o == 'x' else self.by)/2 #第i排桩距柱边距离
                bs = 2*self.a+3*self.D*(n-1) #承台截面计算宽度
                w = self.wy if o == 'x' else self.wx
                if bs > w:
                    bs = w
                # 计算第i排桩竖向力设计值
                group = yi if o == 'x' else xi
                ngp = len(group)
                Nid = max([(Nd(i,j) if o == 'x' else Nd(j,i)) for j in range(ngp)])*ngp
                if x <= self.h:
                    # 按拉压杆模型计算承载力(8.5.4条)
                    # group = yi if o == 'x' else xi
                    # ngp = len(group)
                    # Nid = max([Nd(i,j) for j in range(ngp)])*ngp
                    θi = atan(self.h0/(a+x))
                    Cid = Nid/sin(θi)
                    Tid = Nid/tan(θi)
                    # bs = 2*self.a+3*self.D*(n-1)
                    # w = self.wy if o == 'x' else self.wx
                    # if bs > w:
                    #     bs = w
                    t, ε1, fced, Ciu = self.capacity(
                        self.s, self.d, self.b, θi, Tid*1e3, As, self.Es, self.fcd, bs, self.βc)
                    Tiu = self.fsd*As
                    if o == 'x':
                        self.Rstx.append(('{}={}'.format(o, li[i]), '拉压杆模型', t, bs, ε1, fced, Cid, Ciu/1e3, Tid, Tiu/1e3))
                    else:
                        self.Rsty.append(('{}={}'.format(o, li[i]), '拉压杆模型', t, bs, ε1, fced, Cid, Ciu/1e3, Tid, Tiu/1e3))
                else:
                    # 按梁构件计算抗弯承载力(8.5.2条)
                    j = i
                    Mcd = 0
                    while True:
                        Mcd += Nid*x
                        if i == 0:
                            j += 1
                            if li[j] >= 0:
                                break
                        else:
                            j -= 1
                            if li[j] <= 0:
                                break
                        x = abs(li[j]) - (self.bx if o == 'x' else self.by)/2
                        Nid = max([Nd(i,j) if o == 'x' else Nd(j,i) for j in range(ngp)])*ngp
                    fc = bc.fc_rect(
                        option="review", γ0=1.1, fcd=self.fcd, fcuk=35, Es=200000, b=bs, h0=self.h0,
                        ftd=self.ftd, fsd=self.fsd, As=As, fsd_=self.fsd, As_=0, ps="无", 
                        Md = Mcd*1e-3)
                    # f = fc_rect(concrete="C50", rebar="HRB400")
                    fc.solve()
                    self.fc_beams.append(fc)

        # 8.5.5节 冲切承载力验算
        # 1 柱或墩台向下冲切
        Fld = self.Fd
        for ix in range(1, nx-1):
            for iy in range(1, ny-1):
                Fld -= Nd(ix, iy)
        ax0 = abs(xi[0]) - self.D/2 - self.bx/2
        ax1 = abs(xi[-1]) - self.D/2 - self.bx/2
        ax = (ax0+ax1)/2
        ay0 = abs(yi[0]) - self.D/2 - self.by/2
        ay1 = abs(yi[-1]) - self.D/2 - self.by/2
        ay = (ay0+ay1)/2
        λx = max(ax/self.h0, 0.2)
        λy = max(ay/self.h0, 0.2)
        αpx = 1.2/(λx+0.2) # (8.5.5-2)
        αpy = 1.2/(λy+0.2) # (8.5.5-3)
        f_Flu = lambda ftd,h0,αpx,by,ay,αpy,bx,ax:0.6*ftd*h0*(2*αpx*(by+ay)+2*αpy*(bx+ax)) # (8.5.5-1)
        Flu = f_Flu(self.ftd,self.h0,αpx,self.by,ay,αpy,self.bx,ax)/1e3 # kN
        # 保存计算结果
        self.punching_down = {'Fld':Fld, 'Flu':Flu}
        # 替代上面的代码
        self.punching_capacity_down = punching_capacity(
            option="down", γ0=self.γ0, ftd=self.ftd, ax=ax, ay=ay, bx=self.bx, by=self.by, h0=self.h0, Fld=Fld)
        self.punching_capacity_down.solve()

        # 2 角桩向上冲切
        f_Flu = lambda ftd,h0,αpx,by,ay,αpy,bx,ax:0.6*ftd*h0*(αpx_*(by+ay/2)+αpy_*(bx+ax/2)) # (8.5.5-4)
        self.punching_up = []
        self.punching_capacity_ups = []
        for ix in (0, nx-1):
            for iy in (0, ny-1):
                Fld = Nd(ix, iy)
                ax0 = abs(xi[0]) - self.D/2 - self.bx/2
                ax1 = abs(xi[-1]) - self.D/2 - self.bx/2
                ax = (ax0+ax1)/2
                bx = self.wx/2 - abs(xi[ix]) + self.D/2
                ay0 = abs(yi[0]) - self.D/2 - self.by/2
                ay1 = abs(yi[-1]) - self.D/2 - self.by/2
                ay = (ay0+ay1)/2
                by = self.wy/2 - abs(yi[iy]) + self.D/2
                λx = max(ax/self.h0, 0.2)
                λy = max(ay/self.h0, 0.2)
                αpx_ = 0.8/(λx+0.2) # (8.5.5-5)
                αpy_ = 0.8/(λy+0.2) # (8.5.5-6)
                Flu = f_Flu(self.ftd,self.h0,αpx_,by,ay,αpy_,bx,ax)/1e3 # kN
                # 保存计算结果
                self.punching_up.append({'type':'角桩', 'ix':ix, 'iy':iy, 'Fld':Fld, 'Flu':Flu})
                # 替代上面的代码
                punching_capacity_up = punching_capacity(
                    option="up_corner", γ0=self.γ0, ftd=self.ftd, ax=ax, ay=ay, bx=self.bx, by=self.by, h0=self.h0, Fld=Fld)
                punching_capacity_up.solve()
                self.punching_capacity_ups.append(punching_capacity_up)

        # 3 边桩向上冲切
        # f_Flu = lambda ftd,h0,αpx,by,ay,αpy,bx,ax:0.6*ftd*h0*(αpx_*(bp+h0)+0.667*(2*bx+ax)) # (8.5.5-7)
        for o in ('x', 'y'):
            ni = nx if o == 'x' else ny
            nj = ny if o == 'x' else nx
            for i in (0, ni-1):
                for j in range(1, nj-1):
                    ix = i if o == 'x' else j
                    iy = j if o == 'x' else i
                    Fld = Nd(ix, iy)
                    ax0 = abs(xi[0]) - self.D/2 - self.bx/2
                    ax1 = abs(xi[-1]) - self.D/2 - self.bx/2
                    ax = (ax0+ax1)/2
                    bx = self.wx/2 - abs(xi[ix]) + self.D/2
                    ay0 = abs(yi[0]) - self.D/2 - self.by/2
                    ay1 = abs(yi[-1]) - self.D/2 - self.by/2
                    ay = (ay0+ay1)/2
                    by = self.wy/2 - abs(yi[iy]) + self.D/2
                    λx = max(ax/self.h0, 0.2)
                    λy = max(ay/self.h0, 0.2)
                    αpx_ = 0.8/(λx+0.2) # (8.5.5-2)
                    αpy_ = 0.8/(λy+0.2) # (8.5.5-3)
                    # Flu = f_Flu(self.ftd,self.h0,αpx_,by,ay,αpy_,bx,ax)/1e3 # kN
                    # 保存计算结果
                    self.punching_up.append({'type':'边桩', 'ix':ix, 'iy':iy, 'Fld':Fld, 'Flu':Flu})
                    # 替代上面的代码
                    punching_capacity_up = punching_capacity(
                        option="up_side", γ0=self.γ0, ftd=self.ftd, ax=ax, ay=ay, bx=self.bx, by=self.by, h0=self.h0, 
                        bp=self.b, Fld=Fld)
                    punching_capacity_up.solve()
                    self.punching_capacity_ups.append(punching_capacity_up)
Beispiel #26
0
    def solve_Ra(self):
        self.positive_check('L', 'u', 'Ap', 'm0', 'λ', 'k2', 'γ2')

        def _to_list(param):
            if hasattr(param, '__len__') and not isinstance(param, str):
                return param
            else:
                return [param]

        self.layers = _to_list(self.layers)
        self.li = _to_list(self.li)
        self.fa0 = _to_list(self.fa0)
        self.qik = _to_list(self.qik)

        # 判断列表参数的元素个数是否一致
        n = len(self.layers)
        for item in ('li', 'qik', 'fa0'):
            attr = getattr(self, item)
            if len(attr) != n:
                raise InputError(self, item, '元素个数与土层名称个数不一致')

        if self.L > sum(self.li):
            raise InputError(self, 'L', '桩长不能大于土层厚度之和')
        typeγ = type(self.γ2)
        bl = typeγ is list or typeγ is tuple
        ra = 0  # 竖向承载力(kN)
        γl = 0  # 土层重度*土层厚度之和
        Nn = 0  # 负摩阻力(kN)
        # 负摩阻力计算,条文说明5.3.2节
        ls = 0
        if self.option:
            if self.ln >= sum(self.li):
                raise InputError(self, 'ln', '不能超过土层厚度之和')
            if self.ln > self.L:
                raise InputError(self, 'ln', '中性点深度不能大于桩长')
            for i in range(len(self.li)):
                if ls < self.ln:
                    if ls + self.li[i] < self.ln:
                        if bl:
                            γl += self.li[i] * self.γ2[i]
                            γi_ = γl / (ls + self.li[i])
                        else:
                            γi_ = self.γ2 - 10
                    else:
                        if bl:
                            γl += (self.ln - ls) * self.γ2[i]
                            γi_ = γl / self.ln
                        else:
                            γi_ = self.γ2 - 10
                    if γi_ < 0:
                        raise InputError(self, 'γ2', '应>10')
                    zi = ls + self.li[i] / 2  # 第i层土中点深度
                    σvi_ = self.p + γi_ * zi
                    qni = self.β * σvi_
                    Nn += self.u * qni * self.li[i]
                else:
                    break
                ls += self.li[i]
        # 承载力计算
        # ls = self.L
        # lstop = self.ln if self.option else 0
        # for i in range(len(self.li)):
        #     if ls > self.li[i]:
        #         ra += 0.5*self.u*self.qik[i]*self.li[i]
        #         if bl:
        #             γ_total += self.li[i]*self.γ2[i]
        #     elif ls > 0:
        #         if bl:
        #             γ_total += self.li[i]*ls
        #         self.γ2 = γ_total / self.L if bl else self.γ2
        #         self.positive_check('γ2')
        #         self.h = self.L if self.L < 40 else 40
        #         self.qr = self.m0*self.λ*(self.fa0[i]+self.k2*self.γ2*(self.h-3))
        #         ra += 0.5*self.u*self.qik[i]*ls + self.Ap*self.qr
        #         break
        #     else:
        #         break
        #     ls -= self.li[i]
        ls = 0
        for i in range(len(self.li)):
            if self.option and ls + self.li[i] <= self.ln:
                ls += self.li[i]
                continue
            if ls + self.li[i] < self.L:
                if bl:
                    γl += self.li[i] * self.γ2[i]
                ra += 0.5 * self.u * self.qik[i] * self.li[i]
            elif ls < self.L:
                if bl:
                    γl += (self.ln - ls) * self.γ2[i]
                self.γ2 = γl / self.L if bl else self.γ2
                self.positive_check('γ2')
                if self.h > 40:
                    self.h = 40
                self.qr = self.m0 * self.λ * (self.fa0[i] + self.k2 * self.γ2 *
                                              (self.h - 3))
                ra += 0.5 * self.u * self.qik[i] * (self.L -
                                                    ls) + self.Ap * self.qr
                break
            else:
                break
            ls += self.li[i]
        self.Ra = ra - Nn
        self.Nn = Nn
        self.R = self.R0 + (self.γc - self.γ2) * self.L * self.Ap
        self.K = self.Ra / self.R
        return ra
Beispiel #27
0
 def solve_wmax(self):
     # αcr #uncomplete
     if self.force_type == '0' or self.force_type == '1':
         if self.Ap>0:
             self.αcr = 1.5
         else:
             self.αcr = 1.9
     elif self.force_type == '2':
         if self.Ap>0:
             self.αcr = 1.5 #?
         else:
             self.αcr = 2.4
     elif self.force_type == '3':
         if self.Ap>0:
             self.αcr = 2.2
         else:
             self.αcr = 2.7
     # todo: 添加预应力混凝土构件特征系数
     # Ate
     if self.force_type=='3':
         self.Ate=self.b*self.h
     else:
         self.Ate=0.5*self.b*self.h
         if self.bf > self.b and self.hf > 0:
             self.Ate += (self.bf-self.b)*self.hf
     # ρte
     self.ρte = (self.As + self.Ap)/ self.Ate
     if self.ρte<0.01:
         self.ρte = 0.01
     # 钢筋等效应力
     if self.force_type == '0':
         self.σs = 1E6*self.Mq/0.87/self.h0/self.As
     elif self.force_type == '1':
         self.validate('positive', 'Mq')
         hf_ = self.hf_
         if self.hf_>0.2*self.h0:
             hf_ = 0.2*self.h0
         gamma_f_comp = (self.bf_-self.b)*hf_/self.b/self.h0
         self.e0 = self.Mq/self.Nq*1e3
         eta_s=1+1/4000/(self.e0/self.h0)*math.pow(self.l0/self.h,2)
         e=eta_s*self.e0+self.ys
         z=(0.87-0.12*(1-gamma_f_comp)*math.pow(self.h0/e,2))*self.h0
         self.σs = self.Nq*1e3*(e-z)/self.As/z
     elif self.force_type == '2':
         self.e0 = self.Mq/self.Nq*1e3
         self.e_ = self.e0+self.ys_
         self.σs = self.Nq*1E3*self.e_/self.As/(self.h0-self.as_)
     elif self.force_type == '3':
         self.σs = self.Nq*1E3/self.As
     else:
         raise InputError(self, 'σs', '无效的输入值')
     # ψ - ψi
     self.ψi = 1.1 - 0.65 * self.ftk / self.ρte / self.σs
     if self.bear_repeated_load:
         self.ψi = 1.0
     elif self.ψi<0.2:
         self.ψi = 0.2
     elif self.ψi>1.0:
         self.ψi = 1.0
     # todo: deq
     self.wmax = self.αcr*self.ψi*self.σs/self.Es*(1.9*self.cs+0.08*self.deq/self.ρte)
     return self.wmax
Beispiel #28
0
    def solve(self):
        self.validate('positive', 'b', 'h')
        self.h0 = self.h - self.a_s
        if self.h0 < 0:
            raise InputError(self, 'h', '截面高度过小导致有效高度为负')
        self.ea = max(20, self.h / 30)  # 6.2.5
        if self.option_m2:
            self.validate('positive', 'N')
            self.A = self.b * self.h
            self.ζc = 0.5 * self.fc * self.A / (self.N * 1e3)
            if self.ζc > 1:
                self.ζc = 1
            self.ηns = eccentric_compression.f_ηns(self.M2 * 1e6, self.N * 1e3,
                                                   self.ea, self.h, self.h0,
                                                   self.lc, self.ζc)
            self.Cm = 0.7 + 0.3 * self.M1 / self.M2
            _Cmηns = self.Cm * self.ηns
            self.M = _Cmηns * self.M2 if _Cmηns > 1 else self.M2
        self.e0 = self.M / self.N * 1e3
        self.ei = self.e0 + self.ea  # (6.2.17-4)
        # strictly, a = (σs*As*a_s+σp*Ap*ap)/(σs*As+σp*Ap)
        self.a = self.a_s if self.Ap == 0 else (self.a_s + self.ap) / 2
        self.e = self.ei + self.h / 2 - self.a  # (6.2.17-3)
        self.es = self.ei + self.h / 2 - self.a_s
        self.ep = self.ei + self.h / 2 - self.ap
        self.es_ = self.ei - self.h / 2 + self.as_
        self.ep_ = self.ei - self.h / 2 + self.ap_
        self.β1 = fβ1(self.fcuk)
        self.εcu = self.f_εcu(self.fcuk)
        self.ξb = self.fξb(self.β1, self.fy, self.Es, self.εcu, self.fpy,
                           self.σp0)
        self.xb = self.ξb * self.h0
        self.Asmin = self.ρmin * self.b * self.h
        # self._b = self.b
        # if self.bf>0 and self.hf>0:
        #     self.b = self.bf
        # super(eccentric_compression_Ishape, eccentric_compression_Ishape).solve(self)
        # ec = eccentric_compression()
        # ec.inputs = self.inputs
        # ec.solve()
        # self.x = ec.x
        # if self.x <= self.hf_:
        #     self.b = self._b
        #     self._b = self.bf
        #     return
        if self.option == 'review':
            if self.symmetrical:
                self.As_ = self.As
            self.large_eccentric, self.x, Nu = self.solve_Nu(
                self.b, self.h, self.bf, self.hf, self.bf_, self.hf_, self.h0,
                self.e, self.α1, self.β1, self.fc, self.Es, self.fy, self.As,
                self.es, self.fy_, self.As_, self.as_, self.es_, self.Ep,
                self.fpy, self.σp0, self.Ap, self.ep, self.fpy_, self.σp0_,
                self.Ap_, self.ap_, self.ep_, self.εcu, self.ξb)
            self.Nu = Nu / 1000  #kN
            # 6.2.17 节 第2条要求
            self.σp_ = self.fpy_ - self.σp0
            self.a_ = self.as_ if (self.Ap_ == 0 or self.σp_>0) else \
                (self.fy_*self.As_*self.as_+(self.fpy_-self.σp0_)*self.Ap_*self.ap_)/(self.fy_*self.As_+self.fpy_*self.Ap_)
            if self.x < 2 * self.a_:
                self.es_ = self.ei - (self.h / 2 - self.as_
                                      )  # 偏心压力作用点至受压钢筋合力点的距离
                self.Md = self.N * self.es_ * 1e-3
                self.Mu = self.fMu2(self.h, self.fy, self.As, self.a_s,
                                    self.as_, self.fpy, self.Ap, self.ap,
                                    self.fpy_, self.σp0_, self.Ap_,
                                    self.ap_) * 1e-6  # kNm
            # Ac = self.b*x + (self.bf_-self.b)*self.hf_
            # if self.x > (self.h-self.hf):
            #     Ac += (self.bf-self.b)*(self.x+self.hf-self.h) # TODO:需乘以翼缘折减系数

        else:
            # self.large_eccentric, self.x, self.As, self._As, self.As_, self._As_ = self.solve_As(
            #     self.symmetrical, self.Asp_known, self.Asmin,
            #     self.b, self.h, self.h0, self.N*1e3, self.ei, self.e, self.α1, self.β1, self.fc,
            #     self.Es, self.fy, self.As, self.es, self.fy_, self.As_, self.as_, self.es_,
            #     self.Ep, self.fpy, self.σp0, self.Ap, self.ep,
            #     self.fpy_, self.σp0_, self.Ap_, self.ap_, self.ep_, self.εcu, self.ξb
            # )
            raise Exception('抱歉,I形截面偏心受压截面设计功能尚在开发中,敬请期待')
Beispiel #29
0
 def solve(self):
     self.validate('positive', 'N')
     self.h0 = self.h - self.a_s
     if self.h0 <= 0:
         raise InputError(self, 'h', '截面高度有误')
     self.ea = max(20, self.h / 30)  # 6.2.5
     if self.option_m2:
         self.A = self.b * self.h
         self.ζc = 0.5 * self.fc * self.A / (self.N * 1e3)
         if self.ζc > 1:
             self.ζc = 1
         self.ηns = eccentric_compression.f_ηns(self.M2 * 1e6, self.N * 1e3,
                                                self.ea, self.h, self.h0,
                                                self.lc, self.ζc)
         self.Cm = 0.7 + 0.3 * self.M1 / self.M2
         _Cmηns = self.Cm * self.ηns
         self.M = _Cmηns * self.M2 if _Cmηns > 1 else self.M2
     self.e0 = self.M / self.N * 1e3
     self.ei = self.e0 + self.ea  # (6.2.17-4)
     # strictly, a = (σs*As*a_s+σp*Ap*ap)/(σs*As+σp*Ap)
     self.a = self.a_s if self.Ap == 0 else (self.a_s + self.ap) / 2
     self.e = self.ei + self.h / 2 - self.a  # (6.2.17-3)
     self.es = self.ei + self.h / 2 - self.a_s
     self.ep = self.ei + self.h / 2 - self.ap
     self.es_ = self.ei - self.h / 2 + self.as_
     self.ep_ = self.ei - self.h / 2 + self.ap_
     self.β1 = fβ1(self.fcuk)
     self.εcu = self.f_εcu(self.fcuk)
     self.ξb = self.fξb(self.β1, self.fy, self.Es, self.εcu, self.fpy,
                        self.σp0)
     self.xb = self.ξb * self.h0
     self.Asmin = self.ρmin * self.b * self.h
     if self.option == 'review':
         if self.As == 0 and self.As_ == 0 and self.Ap == 0 and self.Ap_ == 0:
             raise InputError(self, 'As', '应>0')
         if self.symmetrical:
             self.As_ = self.As
         self.large_eccentric, self.x, Nu = self.solve_Nu(
             self.b, self.h0, self.e, self.α1, self.β1, self.fc, self.Es,
             self.fy, self.As, self.es, self.fy_, self.As_, self.as_,
             self.es_, self.Ep, self.fpy, self.σp0, self.Ap, self.ep,
             self.fpy_, self.σp0_, self.Ap_, self.ap_, self.ep_, self.εcu,
             self.ξb)
         self.σs = self.f_σsi(self.β1, self.Es, self.εcu, self.h0, self.x)
         self.σp = self.f_σpi(self.β1, self.Ep, self.εcu, self.h0, self.x,
                              self.σp0)
         self.Nu = Nu / 1000  #kN
         self.Mu = self.fMu(self.α1, self.fc, self.b, self.x, self.h0,
                            self.fy_, self.As_, self.as_, self.σp0_,
                            self.fpy_, self.Ap_, self.ap_) * 1e-6  # kNm
         # 6.2.17 节 第2条要求
         self.σp_ = self.fpy_ - self.σp0
         self.a_ = self.as_ if (self.Ap_ == 0 or self.σp_>0) else \
             (self.fy_*self.As_*self.as_+(self.fpy_-self.σp0_)*self.Ap_*self.ap_)/(self.fy_*self.As_+self.fpy_*self.Ap_)
         if self.x < 2 * self.a_:
             self.es_ = self.ei - (self.h / 2 - self.as_
                                   )  # 偏心压力作用点至受压钢筋合力点的距离
             self.Md = self.N * self.es_ * 1e-3
             self.Mu = self.fMu2(self.h, self.fy, self.As, self.a_s,
                                 self.as_, self.fpy, self.Ap, self.ap,
                                 self.fpy_, self.σp0_, self.Ap_,
                                 self.ap_) * 1e-6  # kNm
     else:
         self.large_eccentric, self.x, self.As, self._As, self.As_, self._As_ = self.solve_As(
             self.symmetrical, self.Asp_known, self.Asmin, self.b, self.h,
             self.h0, self.N * 1e3, self.ei, self.e, self.α1, self.β1,
             self.fc, self.Es, self.fy, self.As, self.es, self.fy_,
             self.As_, self.as_, self.es_, self.Ep, self.fpy, self.σp0,
             self.Ap, self.ep, self.fpy_, self.σp0_, self.Ap_, self.ap_,
             self.ep_, self.εcu, self.ξb)
Beispiel #30
0
    def solve_GB_JTG(self):
        paras = self.inputs
        # 荷载基本组合或偶然组合
        lc = calla.JTG.loads.load_combination
        forces_fu = self.forces_fu
        forces_ac = self.forces_ac
        forces_uls = wrapforces([max(abs(f1),abs(f2)) for f1,f2 in zip(forces_fu, forces_ac)])

        if self.section == 'rectangle':
            self.A = self.b*self.h #mm2
            bc = calla.JTG.bearing_capacity.eccentric_compression(**paras) if self.code == 'JTG' else \
                calla.GB.compressive_capacity.eccentric_compression(**paras)
        elif self.section == 'Tshape':
            self.A = self.b*(self.h - self.hf)+self.bf*self.hf
            bc = calla.JTG.bearing_capacity.eccentric_compression_Ishape(**paras) if self.code == 'JTG' else \
                calla.GB.compressive_capacity.eccentric_compression_Ishape(**paras)
        elif self.section == 'round':
            self.A = pi/4*self.d**2
            bc = calla.JTG.bearing_capacity.bc_round(**paras) if self.code == 'JTG' else \
                calla.GB.flexural_capacity.fc_round(**paras)
            bc.r = self.d/2
            bc.rs = self.d/2 - self.a_s
        else:
            raise NameError('section type {} is not defined'.format(self.section))

        # 确定两个方向的钢筋面积
        def _seperate(param:str):
            a = getattr(self, param)
            if a == None:
                return None
            if isinstance(a, float) or isinstance(a, int):
                ax = ay = a
            elif isinstance(a, tuple) or isinstance(a, list):
                n = len(a)
                if n >0 and n < 1:
                    ax = ay = a
                elif n > 1:
                    ax = a[0]
                    ay = a[1]
                else:
                    raise InputError(self,param,'无法识别的输入')
            else:
                raise InputError(self,param,'无法识别的输入')
            return (ax, ay)

        if isinstance(self.As, float) or isinstance(self.As, int):
            Asx = Asy = self.As
        elif isinstance(self.As, tuple) or isinstance(self.As, list):
            n = len(self.As)
            if n >0 and n < 1:
                Asx = Asy = self.As
            elif n > 1:
                Asx = self.As[0]
                Asy = self.As[1]
            else:
                raise InputError(self,'As','无法识别的输入')
        else:
            raise InputError(self,'As','无法识别的输入')
        Asx_, Asy_ = _seperate('As_')
        if isinstance(self.Ap, float) or isinstance(self.Ap, int):
            Apx = Apy = self.Ap
        elif isinstance(self.Ap, tuple) or isinstance(self.Ap, list):
            n = len(self.Ap)
            if n >0 and n < 1:
                Apx = Apy = self.Ap
            elif n > 1:
                Apx = self.Ap[0]
                Apy = self.Ap[1]
            else:
                raise InputError(self,'Ap','无法识别的输入')
        else:
            raise InputError(self,'Ap','无法识别的输入')

        # 轴心受压承载力
        ac = calla.JTG.bearing_capacity.axial_compression(**paras) if self.code == 'JTG' else \
            calla.GB.compressive_capacity.axial_compression(**paras)
        ac.Nd = forces_uls.Fx
        ac.A = self.A
        ac.As_ = Asx+Asy
        ac.solve()

        # 偏心受压承载力
        bc.fcuk = calla.JTG.concrete.fcuk(self.concrete)
        # bc.fcd = calla.JTG.concrete.fcd(self.concrete)
        # bc.fsd=bc.fsd_=calla.JTG.rebar.fsd(self.rebar)
        bc.option = 'review'
        Nd = forces_uls.Fx
        #choseX = forces_uls[0] > forces_uls[1]
        bcs = []
        # z方向偏心弯曲验算,对于圆截面则是合力方向计算
        if self.section == 'round':
            Md = sqrt(forces_uls.Mz**2+forces_uls.My**2)
        else:
            Md = forces_uls.My
        if self.code == 'GB':
            bc.N = abs(Nd)
            bc.M = abs(Md)
        else:
            bc.Nd = abs(Nd)
            bc.Md = abs(Md)
        bc.b = self.h
        bc.h = self.b
        bc.h0 = self.b - self.as_
        bc.l0 = self.k*self.l
        bc.As = Asx
        bc.As_ = Asx_
        bc.Ap = Apx
        bc.solve()
        bcs.append(bc)
        # y方向偏心弯曲验算
        if self.section != 'round':
            bcy = copy.copy(bc)
            Md = abs(forces_uls.Mz)
            if self.code == 'GB':
                bc.M = Md
            else:
                bc.Md = Md
            bcy.b = self.b
            bcy.h = self.h
            bcy.h0 = self.h - self.as_
            bcy.As = Asy
            bcy.As_ = Asy_
            bcy.Ap = Apy
            bcy.solve()
            bcs.append(bcy)

        #双向偏心受压承载力
        if self.section != 'round' and self.code == 'JTG':
            be = calla.JTG.bearing_capacity.biaxial_eccentric(**paras) # TODO: support GB
            be.Nd = forces_uls.Fx
            be.Nu0 = ac.Nud
            be.Nux = bcs[0].Nu
            be.Nuy = bcs[1].Nu
            be.solve()

        # 裂缝宽度
        cw = calla.JTG.crack_width.crack_width(**paras) if self.code == 'JTG' else \
            calla.GB.crack_width.crack_width(**paras)
        if self.section == 'round':
            cw.case = 'round'
            cw.r = self.d/2
            cw.rs = self.d/2 - self.a_s
        else:
            cw.case = 'rect'
            cw.b = self.h
            cw.h = self.b
            cw.h0 = cw.h-self.a_s
            cw.ys = cw.h/2-self.a_s
            cw.C3 = 0.9
        cw.l0 = self.k*self.l
        cw.d = self.deq
        cw.C1 = 1.4 if self.rebar.startswith('HPB') else 1.0
        # 内力计算
        # 长期作用(准永久组合)
        forces_l=wrapforces(self.forces_qp)
        cw.Nl = abs(forces_l.Fx)
        # 短期作用(频遇组合)
        forces_s = wrapforces(self.forces_fr)
        cw.Ns = abs(forces_s.Fx)
        # z方向验算
        cw.As = Asx
        if self.section == 'round':
            cw.Ml = sqrt(forces_l.Mz**2+forces_l.My**2)
            cw.Ms = sqrt(forces_s.Mz**2+forces_s.My**2)
        else:
            cw.Ml = abs(forces_l.My)
            cw.Ms = abs(forces_s.My)
        # y方向验算
        cws = []
        cws.append(cw)
        if self.section != 'round':
            cws.append(copy.copy(cw))
            cws[1].b = self.b
            cws[1].h = self.h
            cws[1].h0 = cws[1].h-cws[1].a_s
            cws[1].As = Asy
            cws[1].ys = cws[1].h/2-cws[1].a_s
            cws[1].Ml = abs(forces_l.Mz)
            cws[1].Ms = abs(forces_s.Mz)
        for f in cws:
            if f.Ns == 0:
                f.force_type = 'BD'
            else:
                if f.Ms == 0:
                    f.force_type = 'AT' if forces_l.Fx > 0 else 'AC'
                else:
                    f.force_type = 'EC' if forces_l.Fx < 0 else 'ET'
                    f.Ns = abs(f.Ns)
            if f.force_type != 'AC':
                f.solve()
        # 保存计算器
        self.ac = ac
        self.bcs = bcs
        if self.section != 'round':
            self.be = be
        self.cws = cws