Beispiel #1
0
 def trainModel(self, cfg):
     callbacks = [self.log, \
                  cb.MyModelCheckpointInterval(cfg), \
                  cb.MyLearningRateScheduler(cfg), \
                  cb.SaveLog2File(cfg), \
                  cb.PrintCallBack()]
     
     if cfg.include_eval:
         callbacks.append(cb.EvaluateTest(self.genTest, m.EvalResults, cfg))
         
         
         
     if cfg.include_validation:
         callbacks.append(cb.MyEarlyStopping(cfg))
         callbacks.append(cb.MyModelCheckpointBest(cfg))
         self.model.fit_generator(generator = self.genTrain.begin(), \
                 steps_per_epoch = self.genTrain.nb_batches, \
                 validation_data = self.genVal.begin(), \
                 validation_steps = self.genVal.nb_batches, \
                 epochs = cfg.epoch_end, initial_epoch=cfg.epoch_begin, callbacks=callbacks)
     else:
         self.model.fit_generator(generator = self.genTrain.begin(), \
                 steps_per_epoch = self.genTrain.nb_batches, \
                 verbose = 2,\
                 epochs = cfg.epoch_end, initial_epoch=cfg.epoch_begin, callbacks=callbacks)
Beispiel #2
0
                             cfg=cfg,
                             data_type='train',
                             do_meta=False)

    # models
    Models = methods.AllModels(cfg, mode='train', do_hoi=True)
    _, _, model_hoi = Models.get_models()

    sys.stdout.flush()

    #if False:
    # train
    callbacks = [callbacks.MyModelCheckpointInterval(cfg), \
                 callbacks.MyLearningRateScheduler(cfg), \
                 callbacks.MyModelCheckpointWeightsInterval(cfg),\
                 callbacks.SaveLog2File(cfg), \
                 callbacks.PrintCallBack()]

    if cfg.dataset == 'TUPPMI':
        model_hoi.fit_generator(generator = genTrain.begin(), \
                    steps_per_epoch = genTrain.nb_batches, \
                    verbose = 2,\
                    epochs = cfg.epoch_end, initial_epoch=cfg.epoch_begin, callbacks=callbacks)
    else:
        genTest = DataGenerator(imagesMeta=data.valGTMeta,
                                cfg=cfg,
                                data_type='test',
                                do_meta=False,
                                mode='val')
        model_hoi.fit_generator(generator = genTrain.begin(), \
                    steps_per_epoch = genTrain.nb_batches, \