def get_images(): clear_folder(datasetPath + "images") clear_folder(datasetPath + "projections") try: uploaded_files = request.files.getlist("file[]") for idx, file in enumerate(uploaded_files): file.save(dst=datasetPath + "images/" + file.filename + ".jpg") camera.main(datasetPath) pmvs.main(datasetPath) mesh.main("expansion_pointcloud.ply") print('DONE') except: print(exc_info()) return jsonify({"message": "fail"}) return jsonify({"message": "done"})
def play_move(self): computer_move = get_computer_move() human_move = camera.main() winner = get_match_winner(human_move, computer_move) if winner == -1: self.human_wins += 1 elif winner == 1: self.computer_wins += 1 self.games_played += 1 result = {1: "LOSE", 0: "TIE", -1: "WIN"}[winner] self.win_lose_text.setText( f"You played {get_full_move(human_move).upper()} " f"and the computer played {get_full_move(computer_move).upper()} " f"which means you {result}!\n\n" f"Computer wins: {self.computer_wins}\n" f"Human wins: {self.human_wins}\n" f"Games played: {self.games_played}") self.win_lose_text.adjustSize()
def callback(): #camera.main(camera.parse_arguments(['ALL', 'pre-trained/20170512-110547.pb', 'classifier.pkl', '--interval=1', '--minsize=80', self])) camera.main('ALL', 'pre-trained/20170512-110547.pb', 'classifier.pkl', 3, 80, captureMode, self)
def callback(): camera.main('ALL', 'pre-trained/20170512-110547.pb', 'classifier.pkl', 1, 80, captureMode, self)
import os import face_recognition import camera, time dataset = os.listdir('images') count = 0 current_image = camera.main() print("Image obtained...") print() #print(current_image) #current_image=face_recognition.load_image_file('images/'+dataset[7]) encoded_current_image = face_recognition.face_encodings(current_image) #print(encoded_current_image) print("Authenticating...") for image in dataset: check_image = face_recognition.load_image_file('images/' + image) faces = face_recognition.face_encodings(check_image) for face in faces: encoded_check_image = face #print(encoded_check_image) result = face_recognition.compare_faces(encoded_current_image, encoded_check_image) #print(result) if len(result) == 0: continue
def detect(): return Response(gen2(main()), mimetype='multipart/x-mixed-replace; boundary=frame')
def video_feed(): return Response(gen(main()), mimetype='multipart/x-mixed-replace; boundary=frame')
import camera import painter camera.main() painter.main()