def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(
        p.paper.svg_elements(1),
        [
            (
                '<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
                '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
                'fill="#000000" />'
            ),
            (
                '<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
                'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'
            ),
            (
                '<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
                'fill="#000000" />'
            ),
        ]
    )
def test_mirror_end_slant():
    paper = Paper()

    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.turn_to(-45)
    p.line_forward(5 * sqrt2, end_slant=45)
    p.paper.mirror_x(0)
    paper.merge(p.paper)

    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.turn_to(45)
    p.line_forward(5 * sqrt2)
    paper.merge(p.paper)

    paper.join_paths()
    paper.fuse_paths()

    assert_path_data(
        paper, 1,
        'M-5.5,4.5 L-4.5,5.5 L5.5,-4.5 L4.5,-5.5 L-5.5,4.5 z'
    )
Beispiel #3
0
def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(p.paper.svg_elements(1), [
        ('<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
         '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
         'fill="#000000" />'),
        ('<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
         'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'),
        ('<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
         'fill="#000000" />'),
    ])
Beispiel #4
0
def test_center_on_xy():
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(4)

    p.move_to((2, 1))
    p.circle(1)

    p.paper.center_on_x(0)

    assert_equal(p.paper.svg_elements(0), [
        '<path d="M-2,-1 L-2,1 L2,1 L2,-1 L-2,-1 z" fill="#000000" />',
        '<path d="M2,-1 A 2,2 0 0 0 -2,-1 A 2,2 0 0 0 2,-1 z" fill="#000000" />',
    ])

    p.paper.center_on_y(0)

    assert_equal(p.paper.svg_elements(1), [
        ('<path d="M-2.0,0.0 L-2.0,2.0 L2.0,2.0 L2.0,0.0 L-2.0,0.0 z" '
         'fill="#000000" />'),
        ('<path d="M2.0,0.0 A 2.0,2.0 0 0 0 -2.0,0.0 '
         'A 2.0,2.0 0 0 0 2.0,0.0 z" fill="#000000" />'),
    ])
def test_copy_loop():
    p = Pen()
    p.stroke_mode(0.2)

    def square():
        p.turn_to(180)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)

    p.move_to((0, 0))
    square()
    p = p.copy(paper=True)
    p.move_to((2, 0))
    square()

    assert_path_data(
        p, 1,
        (
            'M0.1,-0.1 L-1.1,-0.1 L-1.1,1.1 L0.1,1.1 L0.1,-0.1 z '
            'M-0.1,0.1 L-0.1,0.9 L-0.9,0.9 L-0.9,0.1 L-0.1,0.1 z '
            'M2.1,-0.1 L0.9,-0.1 L0.9,1.1 L2.1,1.1 L2.1,-0.1 z '
            'M1.9,0.1 L1.9,0.9 L1.1,0.9 L1.1,0.1 L1.9,0.1 z'
        )
    )
def test_center_on_xy():
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(4)

    p.move_to((2, 1))
    p.circle(1)

    p.paper.center_on_x(0)

    assert_equal(
        p.paper.svg_elements(0),
        [
            '<path d="M-2,-1 L-2,1 L2,1 L2,-1 L-2,-1 z" fill="#000000" />',
            '<path d="M2,-1 A 2,2 0 0 0 -2,-1 A 2,2 0 0 0 2,-1 z" fill="#000000" />',
        ]
    )

    p.paper.center_on_y(0)

    assert_equal(
        p.paper.svg_elements(1),
        [
            (
                '<path d="M-2.0,0.0 L-2.0,2.0 L2.0,2.0 L2.0,0.0 L-2.0,0.0 z" '
                'fill="#000000" />'
            ),
            (
                '<path d="M2.0,0.0 A 2.0,2.0 0 0 0 -2.0,0.0 '
                'A 2.0,2.0 0 0 0 2.0,0.0 z" fill="#000000" />'
            ),
        ]
    )
Beispiel #7
0
def test_fuse_with_joint():
    p = Pen()
    p.stroke_mode(2.0)

    p.move_to((0, 0))
    p.turn_to(180)
    p.line_forward(5)
    p.turn_left(90)
    p.line_forward(5)

    p.break_stroke()

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)

    assert_path_data(p, 0, [
        'M0,1 L0,-1 L-6,-1 L-6,5 L-4,5 L-4,1 L0,1 z',
        'M0,-1 L0,1 L5,1 L5,-1 L0,-1 z',
    ])

    p.paper.join_paths()
    p.paper.fuse_paths()

    assert_path_data(p, 0, 'M-6,5 L-4,5 L-4,1 L5,1 L5,-1 L-6,-1 L-6,5 z')
def test_fuse_with_joint():
    p = Pen()
    p.stroke_mode(2.0)

    p.move_to((0, 0))
    p.turn_to(180)
    p.line_forward(5)
    p.turn_left(90)
    p.line_forward(5)

    p.break_stroke()

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)

    assert_path_data(
        p, 0,
        [
            'M0,1 L0,-1 L-6,-1 L-6,5 L-4,5 L-4,1 L0,1 z',
            'M0,-1 L0,1 L5,1 L5,-1 L0,-1 z',
        ]
    )

    p.paper.join_paths()
    p.paper.fuse_paths()

    assert_path_data(
        p, 0,
        'M-6,5 L-4,5 L-4,1 L5,1 L5,-1 L-6,-1 L-6,5 z'
    )
def test_copy_loop():
    p = Pen()
    p.stroke_mode(0.2)

    def square():
        p.turn_to(180)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)
        p.turn_left(90)
        p.line_forward(1)

    p.move_to((0, 0))
    square()
    p = p.copy(paper=True)
    p.move_to((2, 0))
    square()

    assert_path_data(p, 1,
                     ('M0.1,-0.1 L-1.1,-0.1 L-1.1,1.1 L0.1,1.1 L0.1,-0.1 z '
                      'M-0.1,0.1 L-0.1,0.9 L-0.9,0.9 L-0.9,0.1 L-0.1,0.1 z '
                      'M2.1,-0.1 L0.9,-0.1 L0.9,1.1 L2.1,1.1 L2.1,-0.1 z '
                      'M1.9,0.1 L1.9,0.9 L1.1,0.9 L1.1,0.1 L1.9,0.1 z'))
Beispiel #10
0
def test_join_paths_thick():
    # Segments join together if possible when join_paths is called.
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)
    p.break_stroke()
    p.turn_left(90)
    p.line_forward(5)
    p.paper.join_paths()
    assert_path_data(p, 0, 'M0,-1 L0,1 L6,1 L6,-5 L4,-5 L4,-1 L0,-1 z')
Beispiel #11
0
def draw_template_path():
    pen = Pen()
    pen.stroke_mode(0.05, '#466184')
    pen.turn_to(0)
    pen.move_to((0, BOTTOM))
    pen.line_forward(10)
    pen.move_to((0, MIDDLE))
    pen.line_forward(10)
    pen.move_to((0, TOP))
    pen.line_forward(10)
    pen.paper.center_on_x(0)
    return pen.paper
Beispiel #12
0
def test_fuse_paths():
    # Create two halves of a stroke in the same direction.
    p = Pen()
    p.stroke_mode(sqrt2)

    p.move_to((-3, 3))
    p.turn_to(-45)
    p.line_forward(3 * sqrt2, start_slant=0)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.paper.fuse_paths()

    assert_path_data(p, 1,
                     ['M-2.0,-3.0 L-4.0,-3.0 L2.0,3.0 L4.0,3.0 L-2.0,-3.0 z'])
def test_join_paths_thick():
    # Segments join together if possible when join_paths is called.
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)
    p.break_stroke()
    p.turn_left(90)
    p.line_forward(5)
    p.paper.join_paths()
    assert_path_data(
        p, 0,
        'M0,-1 L0,1 L6,1 L6,-5 L4,-5 L4,-1 L0,-1 z'
    )
def test_fuse_paths():
    # Create two halves of a stroke in the same direction.
    p = Pen()
    p.stroke_mode(sqrt2)

    p.move_to((-3, 3))
    p.turn_to(-45)
    p.line_forward(3 * sqrt2, start_slant=0)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.paper.fuse_paths()

    assert_path_data(
        p, 1,
        ['M-2.0,-3.0 L-4.0,-3.0 L2.0,3.0 L4.0,3.0 L-2.0,-3.0 z']
    )
Beispiel #15
0
def test_join_paths_turn_back_no_joint():
    p = Pen()
    p.stroke_mode(1.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(10)
    p.turn_right(180)
    p.break_stroke()
    p.line_forward(5)
    p.paper.join_paths()

    line1, line2 = p.last_path().segments
    assert line1.end_joint_illegal
    assert line2.start_joint_illegal

    assert_path_data(p, 1,
                     ('M0.0,-0.5 L0.0,0.5 L10.0,0.5 L10.0,-0.5 '
                      'L5.0,-0.5 L5.0,0.5 L10.0,0.5 L10.0,-0.5 L0.0,-0.5 z'))
def test_copy_custom_cap():
    # Regression test for a bug where doing pen.copy() in a cap function would
    # break outline drawing.
    p = Pen()
    p.stroke_mode(2.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)
    p.turn_left(90)
    p.line_forward(5)

    def copy_cap(pen, end):
        pen.copy()
        pen.line_to(end)

    p.last_segment().end_cap = copy_cap

    assert_path_data(p, 0, 'M0,-1 L0,1 L6,1 L6,-5 L4,-5 L4,-1 L0,-1 z')
Beispiel #17
0
def test_join_and_fuse_simple():
    # Create two halves of a stroke in separate directions.
    p = Pen()
    p.stroke_mode(sqrt2)

    p.move_to((0, 0))
    p.turn_to(-45)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.break_stroke()

    p.move_to((0, 0))
    p.turn_to(-45 + 180)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.paper.join_paths()
    p.paper.fuse_paths()

    assert_path_data(p, 1,
                     'M2.0,3.0 L4.0,3.0 L-2.0,-3.0 L-4.0,-3.0 L2.0,3.0 z')
def test_copy_custom_cap():
    # Regression test for a bug where doing pen.copy() in a cap function would
    # break outline drawing.
    p = Pen()
    p.stroke_mode(2.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(5)
    p.turn_left(90)
    p.line_forward(5)

    def copy_cap(pen, end):
        pen.copy()
        pen.line_to(end)

    p.last_segment().end_cap = copy_cap

    assert_path_data(
        p, 0,
        'M0,-1 L0,1 L6,1 L6,-5 L4,-5 L4,-1 L0,-1 z'
    )
def test_join_paths_turn_back_no_joint():
    p = Pen()
    p.stroke_mode(1.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(10)
    p.turn_right(180)
    p.break_stroke()
    p.line_forward(5)
    p.paper.join_paths()

    line1, line2 = p.last_path().segments
    assert line1.end_joint_illegal
    assert line2.start_joint_illegal

    assert_path_data(
        p, 1,
        (
            'M0.0,-0.5 L0.0,0.5 L10.0,0.5 L10.0,-0.5 '
            'L5.0,-0.5 L5.0,0.5 L10.0,0.5 L10.0,-0.5 L0.0,-0.5 z'
        )
    )
def test_join_and_fuse_simple():
    # Create two halves of a stroke in separate directions.
    p = Pen()
    p.stroke_mode(sqrt2)

    p.move_to((0, 0))
    p.turn_to(-45)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.break_stroke()

    p.move_to((0, 0))
    p.turn_to(-45 + 180)
    p.line_forward(3 * sqrt2, end_slant=0)

    p.paper.join_paths()
    p.paper.fuse_paths()

    assert_path_data(
        p, 1,
        'M2.0,3.0 L4.0,3.0 L-2.0,-3.0 L-4.0,-3.0 L2.0,3.0 z'
    )
Beispiel #21
0
def test_mirror_end_slant():
    paper = Paper()

    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.turn_to(-45)
    p.line_forward(5 * sqrt2, end_slant=45)
    p.paper.mirror_x(0)
    paper.merge(p.paper)

    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.turn_to(45)
    p.line_forward(5 * sqrt2)
    paper.merge(p.paper)

    paper.join_paths()
    paper.fuse_paths()

    assert_path_data(paper, 1,
                     'M-5.5,4.5 L-4.5,5.5 L5.5,-4.5 L4.5,-5.5 L-5.5,4.5 z')
Beispiel #22
0
def draw():

    p = Pen()

    # Draw sine waves in various widths.
    for width in [0.01, 0.1, 0.3, 0.5, 0.8, 1.0]:
        p.stroke_mode(width)

        func = sine_func_factory(
            amplitude=1.0,
            frequency=4 / math.pi,
            phase=0,
        )
        p.parametric(
            func,
            start=0,
            end=10,
            step=0.1,
        )
        # Next line.
        p.turn_to(-90)
        p.move_forward(1.0 + 2 * width)

    return p.paper
Beispiel #23
0
def draw():

    p = Pen()

    # Draw sine waves in various widths.
    for width in [0.01, 0.1, 0.3, 0.5, 0.8, 1.0]:
        p.stroke_mode(width)

        func = sine_func_factory(
            amplitude=1.0,
            frequency=4 / math.pi,
            phase=0,
        )
        p.parametric(
            func,
            start=0,
            end=10,
            step=0.1,
        )
        # Next line.
        p.turn_to(-90)
        p.move_forward(1.0 + 2 * width)

    return p.paper
def test_line_segment_bounds():
    # Fill mode segment.
    p = Pen()
    p.fill_mode()
    p.move_to((1, 0))
    p.line_to((2, 3))

    line = p.last_segment()
    assert_equal(
        line.bounds(),
        Bounds(1, 0, 2, 3)
    )

    # Stroke mode segment.
    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.line_to((5, 5))

    line = p.last_segment()
    assert_equal(
        line.bounds(),
        Bounds(-0.5, -0.5, 5.5, 5.5)
    )
def test_arc_segment_bounds():
    # Arc which occupies its entire circle.
    p = Pen()
    p.fill_mode()
    p.move_to((1, 0))
    p.turn_to(90)
    p.arc_left(359, 1)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-1, -1, 1, 1)
    )

    # Arc which pushes the boundary only with the endpoints.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(30)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(30, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0.5, 0.5, sqrt3 / 2, sqrt3 / 2)
    )

    # Arc which pushes the boundary with the middle in one spot.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(-45)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(90, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(sqrt2 / 2, -sqrt2 / 2, 1, sqrt2 / 2)
    )

    # Arc which goes right.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(45)
    p.arc_right(90, 3)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0, 0, 3 * sqrt2, 3 - 1.5 * sqrt2)
    )

    # Arc which pushes the boundary with the middle in two spots.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(-45)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(180, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-sqrt2 / 2, -sqrt2 / 2, 1, 1)
    )

    # Half circle, right side
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(0)
    p.arc_right(180, 5)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0, -10, 5, 0)
    )

    # Thick circle,
    p = Pen()
    p.stroke_mode(1.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.move_forward(5)
    p.turn_left(90)
    p.arc_left(180, 5, start_slant=45)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-5.5, -0.5314980314970469, 5.5, 5.5)
    )
import math
from canoepaddle import Pen
from canoepaddle.heading import Heading, Angle

p = Pen()
p.paper.override_bounds(-120, -120, 120, 120)
p.stroke_mode(1.0, '#15A')

p.move_to((0.5, 0.5))


def f(n):
    a = 12
    b = 0.03
    c = 0.2
    d = 1.5
    e = 0.5
    wobble = a * math.exp(-b * n) * math.sin(c * n + d * n**e)
    return (
        Angle(-24 + wobble),
        Angle(24 + wobble),
    )

center_heading = Heading(90)
center = p.position

p.turn_to(center_heading)

num_layers = 26
for layer in range(num_layers):
    lo, hi = f(layer)
            continue
        else:
            point_occupancy[a] += 1

        b = random.choice(points)
        if point_occupancy[b] >= 2:
            continue
        else:
            point_occupancy[b] += 1

        yield a, b


if __name__ == '__main__':
    while True:
        p = Pen()
        p.stroke_mode(0.01)
        for a, b in gen_lines(200, 100):
            p.move_to(a)
            p.line_to(b)
            p.break_stroke()

        try:
            p.paper.join_paths()
        except AssertionError:
            print(p.log())
            break
        else:
            print(p.paper.format_svg(6, resolution=1000))
            break
Beispiel #28
0
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

# TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
Beispiel #29
0
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)

    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper
from canoepaddle import Pen


p = Pen()


def trefoil(origin, radius, num_leaves, leaf_angle, step=1):
    p.turn_to(90)
    points = []
    for i in range(num_leaves):
        p.move_to(origin)
        p.turn_right(360 / num_leaves)
        p.move_forward(radius)
        points.append(p.position)

    p.move_to(points[0])
    for i in range(num_leaves):
        next_point = points[((i + 1) * step) % num_leaves]
        p.turn_toward(origin)
        p.turn_right(leaf_angle / 2)
        p.arc_to(next_point)

p.stroke_mode(1.0, '#a00')
trefoil((0, 0), 8, 3, 110)
p.outline_mode(1.0, 0.1, '#111')
trefoil((0, 0), 8, 3, 110)

print(p.paper.format_svg())
Beispiel #31
0
from canoepaddle import Pen

p = Pen()


def trefoil(origin, radius, num_leaves, leaf_angle, step=1):
    p.turn_to(90)
    points = []
    for i in range(num_leaves):
        p.move_to(origin)
        p.turn_right(360 / num_leaves)
        p.move_forward(radius)
        points.append(p.position)

    p.move_to(points[0])
    for i in range(num_leaves):
        next_point = points[((i + 1) * step) % num_leaves]
        p.turn_toward(origin)
        p.turn_right(leaf_angle / 2)
        p.arc_to(next_point)


p.stroke_mode(1.0, '#a00')
trefoil((0, 0), 8, 3, 110)
p.outline_mode(1.0, 0.1, '#111')
trefoil((0, 0), 8, 3, 110)

print(p.paper.format_svg())
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)


    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

#TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
from canoepaddle import Pen

p = Pen()


def arm(inner=1.5, outer=3):
    p.stroke_mode(1.0)
    p.move_forward(inner)
    p.turn_right(90)
    p.arc_right(200, radius=outer)
    p.fill_mode()
    p.circle(0.5)  # Makeshift round endcaps.

orientation = 70

p.stroke_mode(1.0)
p.move_to((0, 0))
p.circle(1.5)

p.move_to((0, 0))
p.turn_to(orientation)
arm()

p.move_to((0, 0))
p.turn_to(180 + orientation)
arm()

print(p.paper.format_svg())
Beispiel #35
0
from canoepaddle import Pen

p = Pen()
p.stroke_mode(0.15)


def trefoil(origin, radius, num_leaves, leaf_angle, step=1):
    p.turn_to(90)
    points = []
    for i in range(num_leaves):
        p.move_to(origin)
        p.turn_right(360 / num_leaves)
        p.move_forward(radius)
        points.append(p.position)

    p.move_to(points[0])
    for i in range(num_leaves):
        next_point = points[((i + 1) * step) % num_leaves]
        p.turn_toward(origin)
        p.turn_right(leaf_angle / 2)
        p.arc_to(next_point)


trefoil((-6, 6), 3, 3, 110)
trefoil((0, 6), 2.7, 4, 120)
trefoil((6, 6), 2.7, 4, 70)
trefoil((-6, 0), 2.7, 5, 70)
trefoil((0, 0), 2.7, 5, 130)
trefoil((6, 0), 2.7, 5, 110, step=2)
trefoil((-6, -6), 2.7, 31, 20, step=14)
trefoil((0, -6), 3, 8, 120, step=3)
from canoepaddle import Pen

p = Pen()


def arm(inner=1.5, outer=3):
    p.stroke_mode(1.0)
    p.move_forward(inner)
    p.turn_right(90)
    p.arc_right(200, radius=outer)
    p.fill_mode()
    p.circle(0.5)  # Makeshift round endcaps.


orientation = 70

p.stroke_mode(1.0)
p.move_to((0, 0))
p.circle(1.5)

p.move_to((0, 0))
p.turn_to(orientation)
arm()

p.move_to((0, 0))
p.turn_to(180 + orientation)
arm()

print(p.paper.format_svg())
            continue
        else:
            point_occupancy[a] += 1

        b = random.choice(points)
        if point_occupancy[b] >= 2:
            continue
        else:
            point_occupancy[b] += 1

        yield a, b


if __name__ == '__main__':
    while True:
        p = Pen()
        p.stroke_mode(0.01)
        for a, b in gen_lines(200, 100):
            p.move_to(a)
            p.line_to(b)
            p.break_stroke()

        try:
            p.paper.join_paths()
        except AssertionError:
            print(p.log())
            break
        else:
            print(p.paper.format_svg(6, resolution=1000))
            break
Beispiel #38
0
from canoepaddle import Pen

p = Pen()
p.stroke_mode(0.15)


def trefoil(origin, radius, num_leaves, leaf_angle, step=1):
    p.turn_to(90)
    points = []
    for i in range(num_leaves):
        p.move_to(origin)
        p.turn_right(360 / num_leaves)
        p.move_forward(radius)
        points.append(p.position)

    p.move_to(points[0])
    for i in range(num_leaves):
        next_point = points[((i + 1) * step) % num_leaves]
        p.turn_toward(origin)
        p.turn_right(leaf_angle / 2)
        p.arc_to(next_point)

trefoil((-6, 6), 3, 3, 110)
trefoil((0, 6), 2.7, 4, 120)
trefoil((6, 6), 2.7, 4, 70)
trefoil((-6, 0), 2.7, 5, 70)
trefoil((0, 0), 2.7, 5, 130)
trefoil((6, 0), 2.7, 5, 110, step=2)
trefoil((-6, -6), 2.7, 31, 20, step=14)
trefoil((0, -6), 3, 8, 120, step=3)
trefoil((6, -6), 2.7, 30, -90, step=1)
import math
from canoepaddle import Pen
from canoepaddle.heading import Heading, Angle

p = Pen()
p.paper.override_bounds(-120, -120, 120, 120)
p.stroke_mode(1.0, '#15A')

p.move_to((0.5, 0.5))


def f(n):
    a = 12
    b = 0.03
    c = 0.2
    d = 1.5
    e = 0.5
    wobble = a * math.exp(-b * n) * math.sin(c * n + d * n**e)
    return (
        Angle(-24 + wobble),
        Angle(24 + wobble),
    )


center_heading = Heading(90)
center = p.position

p.turn_to(center_heading)

num_layers = 26
for layer in range(num_layers):