Beispiel #1
0
def gen_captcha_text_and_image(iter):

    image = ImageCaptcha(width=captcha_params.get_width(),
                         height=captcha_params.get_height(),
                         font_sizes=[30])
    #print(image)
    #captcha_text = random_text()
    captcha_text = "oO" + random_text()  #proof that "o" and "O" looks the same
    path = '../images/'  #go up one directory then create images folder

    if os.path.exists(
            path) == False:  # if the folder is not existed, create it
        os.mkdir(path)
    captcha = image.generate(captcha_text)
    print('c: ', captcha)
    # naming rules: num(in order)+'_'+'captcha text'.include num is for avoiding the same name
    image.write(captcha_text, path + str(iter) + '_' + captcha_text + '.png')

    captcha_image = Image.open(captcha)
    captcha_image = np.array(captcha_image)

    return captcha_text, captcha_image
import h5py
from keras.models import model_from_json
from keras.utils import plot_model
from keras.preprocessing.image import ImageDataGenerator
import matplotlib
from matplotlib import pyplot as plt

batch_size = 512
nb_epoch = 100
step_epoch = 7

MAX_CAPTCHA = captcha_params.get_captcha_size()
CHAR_SET_LEN = captcha_params.get_char_set_len()

# input image dimensions
img_rows, img_cols = captcha_params.get_height(), captcha_params.get_width()

# number of convolutional filters to use
nb_filters1 = 32
nb_filters2 = 64
nb_filters3 = 64

# size of pooling area for max pooling
pool_size = (2, 2)

# convolution kernel size
kernel_size = (3, 3)

# the data, shuffled and split between train and test sets
(X_train, Y_train), (X_test, Y_test) = load_data(tol_num=3425, train_num=3082)
Beispiel #3
0
# The full neural network code!
###############################
import keras
from load_data import *
import captcha_params
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K

(x_train, y_train), (x_test,
                     y_test) = load_data(tol_num=captcha_params.TOTAL_NUM,
                                         train_num=captcha_params.TRAIN_NUM)
# input image dimensions
img_rows, img_cols = captcha_params.get_height(), int(
    captcha_params.get_width() / captcha_params.CAPTCHA_NB_LETTERS)

MAX_CAPTCHA = captcha_params.get_captcha_size()
CHAR_SET_LEN = captcha_params.get_char_set_len()

batch_size = captcha_params.BATCH_SIZE
nb_classes = MAX_CAPTCHA * CHAR_SET_LEN
nb_epoch = captcha_params.EPOCH

# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)
Beispiel #4
0
import os
from PIL import Image
import numpy as np
import random
import captcha_params

np.random.seed(177)

MAX_CAPTCHA = captcha_params.get_captcha_size()
CHAR_SET_LEN = captcha_params.get_char_set_len()

CHAR_SET = captcha_params.get_char_set()

Y_LEN = captcha_params.get_y_len()

height = captcha_params.get_height()
width = captcha_params.get_width()


# return the index of the max_num in the array
def get_max(array):
    max_num = max(array)
    for i in range(len(array)):
        if array[i] == max_num:
            return i


def get_text(array):
    text = []
    max_num = max(array)
    for i in range(len(array)):
Beispiel #5
0
 # The full neural network code!
###############################
import keras
from load_data import *
import captcha_params
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K

(x_train, y_train), (x_test, y_test) = load_data(tol_num = captcha_params.TOTAL_NUM,train_num = captcha_params.TRAIN_NUM)
# input image dimensions
img_rows, img_cols = captcha_params.get_height(), int(captcha_params.get_width() / captcha_params.CAPTCHA_NB_LETTERS)

MAX_CAPTCHA = captcha_params.get_captcha_size()
CHAR_SET_LEN = captcha_params.get_char_set_len()

batch_size = captcha_params.BATCH_SIZE
nb_classes = MAX_CAPTCHA*CHAR_SET_LEN
nb_epoch = captcha_params.EPOCH

# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)