def trainer(fargs): trainer_id, args = fargs print("Trainer id", trainer_id, "started") # Create a Gym environment env = gym.make(args.env) # Set maximum episode length if args.episode_steps is not None: env._max_episode_steps = args.episode_steps # Get dimensionalities of actions and observations action_space_dim = get_space_dim(env.action_space) observation_space_dim = get_space_dim(env.observation_space) # Instantiate agent and its policy policy = Policy(observation_space_dim, action_space_dim) agent = Agent(policy) training_history = train(agent, env, args.train_episodes, silent=True, train_run_id=trainer_id, early_stop=False) print("Trainer id", trainer_id, "finished") return training_history
def trainer(args): trainer_id, env = args print("Trainer id", trainer_id, "started") training_history = train(env, False, trainer_id) print("Trainer id", trainer_id, "finished") return training_history