def test_already_transformed_X():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    # Take a third of our test data (a tenth of our overall data) for calibration
    df_titanic_test, df_titanic_calibration = train_test_split(df_titanic_test,
                                                               test_size=0.33,
                                                               random_state=42)

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    # pass in return_trans_pipeline, and get the trans pipeline
    trans_pipeline = ml_predictor.train(df_titanic_train,
                                        return_transformation_pipeline=True)

    # get transformed X through transformation_only
    X_train_transformed = ml_predictor.transform_only(df_titanic_train)

    # create a new predictor
    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    # pass in trained trans pipeline, and make sure it works
    ml_predictor.train(df_titanic_train,
                       trained_transformation_pipeline=trans_pipeline)
    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.14 < test_score < -0.12

    # pass in both a trans pipeline and a previously transformed X, and make sure that works
    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)
    ml_predictor.train(None,
                       trained_transformation_pipeline=trans_pipeline,
                       transformed_X=X_train_transformed,
                       transformed_y=df_titanic_train.survived)
    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.14 < test_score < -0.12
Beispiel #2
0
def test_calibrate_final_model_missing_X_test_y_test_classification():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    # Take a third of our test data (a tenth of our overall data) for calibration
    df_titanic_test, df_titanic_calibration = train_test_split(df_titanic_test,
                                                               test_size=0.33,
                                                               random_state=42)

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    # This should still work, just with warning printed
    ml_predictor.train(df_titanic_train, calibrate_final_model=True)

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.14 < test_score < -0.12
Beispiel #3
0
def test_include_bad_y_vals_predict_classification():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    df_titanic_test.iloc[1]['survived'] = float('nan')
    df_titanic_test.iloc[8]['survived'] = float('inf')
    df_titanic_test.iloc[26]['survived'] = None

    ml_predictor.train(df_titanic_train)

    test_score = ml_predictor.score(df_titanic_test.to_dict('records'),
                                    df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.16 < test_score < -0.135
def test_all_algos_classification(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset()

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(
        type_of_estimator='classifier', column_descriptions=column_descriptions)

    ml_predictor.train(
        df_titanic_train,
        model_names=[
            'LogisticRegression', 'RandomForestClassifier', 'RidgeClassifier',
            'GradientBoostingClassifier', 'ExtraTreesClassifier', 'AdaBoostClassifier',
            'SGDClassifier', 'Perceptron', 'PassiveAggressiveClassifier', 'DeepLearningClassifier',
            'XGBClassifier', 'LGBMClassifier', 'LinearSVC'
        ])

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    # Linear models aren't super great on this dataset...
    assert -0.215 < test_score < -0.131
def test_all_algos_regression():
    # a random seed of 42 has ExtraTreesRegressor getting the best CV score,
    # and that model doesn't generalize as well as GradientBoostingRegressor.
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions)

    ml_predictor.train(
        df_boston_train,
        model_names=[
            'LinearRegression', 'RandomForestRegressor', 'Ridge', 'GradientBoostingRegressor',
            'AdaBoostRegressor', 'SGDRegressor', 'PassiveAggressiveRegressor', 'Lasso', 'LassoLars',
            'ElasticNet', 'OrthogonalMatchingPursuit', 'BayesianRidge', 'ARDRegression',
            'MiniBatchKMeans', 'DeepLearningRegressor', 'LGBMRegressor', 'XGBClassifier',
            'LinearSVR', 'CatBoostRegressor'
        ])

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.4 < test_score < -2.8
Beispiel #6
0
def test_list_of_single_model_name_classification():
    np.random.seed(0)
    model_name = 'GradientBoostingClassifier'

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, model_names=[model_name])

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.16 < test_score < -0.135
Beispiel #7
0
def classification_test():
    np.random.seed(0)
    # model_name = 'GradientBoostingClassifier'
    model_name = 'LGBMClassifier'

    df_titanic_train, df_titanic_test = get_titanic_binary_classification_dataset()
    df_titanic_train['DELETE_THIS_FIELD'] = 1

    column_descriptions = {
        'survived': 'output',
        'embarked': 'categorical',
        'pclass': 'categorical',
        'sex': 'categorical',
        'this_does_not_exist': 'ignore',
        'DELETE_THIS_FIELD': 'ignore'
    }

    ml_predictor = Predictor(
        type_of_estimator='classifier', column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, model_names=model_name)

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    lower_bound = -0.16
    if model_name == 'DeepLearningClassifier':
        lower_bound = -0.245
    if model_name == 'LGBMClassifier':
        lower_bound = -0.225

    assert lower_bound < test_score < -0.135
Beispiel #8
0
    def test_compare_all_models_classification():
        np.random.seed(0)

        df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
        )

        column_descriptions = {
            'survived': 'output',
            'sex': 'categorical',
            'embarked': 'categorical',
            'pclass': 'categorical'
        }

        ml_predictor = Predictor(type_of_estimator='classifier',
                                 column_descriptions=column_descriptions)

        ml_predictor.train(df_titanic_train, compare_all_models=True)

        test_score = ml_predictor.score(df_titanic_test,
                                        df_titanic_test.survived)

        print('test_score')
        print(test_score)

        assert -0.16 < test_score < -0.135
def test_perform_feature_selection_true_regression(model_name=None):
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train,
                       perform_feature_selection=True,
                       model_names=model_name)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    # Bumping this up since without these features our score drops
    lower_bound = -4.0
    if model_name == 'DeepLearningRegressor':
        lower_bound = -14.5
    if model_name == 'LGBMRegressor':
        lower_bound = -4.95

    assert lower_bound < test_score < -2.8
Beispiel #10
0
def regression_test():
    # a random seed of 42 has ExtraTreesRegressor getting the best CV score,
    # and that model doesn't generalize as well as GradientBoostingRegressor.
    np.random.seed(0)
    model_name = 'LGBMRegressor'

    df_boston_train, df_boston_test = get_boston_regression_dataset()
    many_dfs = []
    for i in range(100):
        many_dfs.append(df_boston_train)
    df_boston_train = pd.concat(many_dfs)

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train, model_names=[model_name], perform_feature_scaling=False)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    lower_bound = -3.2
    if model_name == 'DeepLearningRegressor':
        lower_bound = -7.8
    if model_name == 'LGBMRegressor':
        lower_bound = -4.95
    if model_name == 'XGBRegressor':
        lower_bound = -3.4

    assert lower_bound < test_score < -2.7
Beispiel #11
0
def test_pass_in_list_of_dictionaries_predict_classification():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    list_titanic_train = df_titanic_train.to_dict('records')

    ml_predictor.train(df_titanic_train)

    test_score = ml_predictor.score(df_titanic_test.to_dict('records'),
                                    df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.16 < test_score < -0.135
Beispiel #12
0
def ensemble_classifier_basic_test(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ensemble_config = [{
        'model_name': 'LGBMClassifier'
    }, {
        'model_name': 'RandomForestClassifier'
    }]

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, ensemble_config=ensemble_config)

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.15 < test_score < -0.131
def test_perform_feature_scaling_true_regression(model_name=None):
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train, perform_feature_scaling=True)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.0 < test_score < -2.7
def test_compare_all_models_regression():
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train, compare_all_models=True)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    # ExtraTrees again throws this off
    assert -3.6 < test_score < -2.8
Beispiel #15
0
def optimize_final_model_classification(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    # We just want to make sure these run, not necessarily make sure that they're super accurate
    # (which takes more time, and is dataset dependent)
    df_titanic_train = df_titanic_train.sample(frac=0.5)

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train,
                       optimize_final_model=True,
                       model_names=model_name)

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    # Small sample sizes mean there's a fair bit of noise here
    lower_bound = -0.18
    if model_name == 'DeepLearningClassifier':
        lower_bound = -0.255
    if model_name == 'LGBMClassifier':
        lower_bound = -0.221
    if model_name == 'GradientBoostingClassifier':
        lower_bound = -0.225
    if model_name == 'CatBoostClassifier':
        lower_bound = -0.221

    assert lower_bound < test_score < -0.135
Beispiel #16
0
def optimize_final_model_regression(model_name=None):
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    # We just want to make sure these run, not necessarily make sure that they're super accurate
    # (which takes more time, and is dataset dependent)
    df_boston_train = df_boston_train.sample(frac=0.5)

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train,
                       optimize_final_model=True,
                       model_names=model_name)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    # the random seed gets a score of -3.21 on python 3.5
    # There's a ton of noise here, due to small sample sizes
    lower_bound = -3.4
    if model_name == 'DeepLearningRegressor':
        lower_bound = -24
    if model_name == 'LGBMRegressor':
        lower_bound = -16
    if model_name == 'GradientBoostingRegressor':
        lower_bound = -5.1
    if model_name == 'CatBoostRegressor':
        lower_bound = -4.5
    if model_name == 'XGBRegressor':
        lower_bound = -4.8

    assert lower_bound < test_score < -2.75
Beispiel #17
0
def test_input_df_unmodified():
    np.random.seed(42)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    df_shape = df_boston_train.shape
    ml_predictor.train(df_boston_train)

    training_shape = df_boston_train.shape
    assert training_shape[0] == df_shape[0]
    assert training_shape[1] == df_shape[1]

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.35 < test_score < -2.8
Beispiel #18
0
def ensemble_regressor_basic_test():
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ensemble_config = [{
        'model_name': 'LGBMRegressor'
    }, {
        'model_name': 'RandomForestRegressor'
    }]

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train, ensemble_config=None)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.0 < test_score < -2.8
Beispiel #19
0
def test_linear_model_analytics_classification(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, model_names='RidgeClassifier')

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert -0.21 < test_score < -0.131
Beispiel #20
0
def test_binary_classification():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, scoring=always_return_ten_thousand)

    test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)

    print('test_score')
    print(test_score)

    assert test_score == -10000
Beispiel #21
0
def getting_single_predictions_regressor_test():
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ensemble_config = [{
        'model_name': 'LGBMRegressor'
    }, {
        'model_name': 'RandomForestRegressor'
    }]

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    # NOTE: this is bad practice to pass in our same training set as our fl_data set, but we don't have enough data to do it any other way
    ml_predictor.train(df_boston_train, ensemble_config=ensemble_config)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.5 < test_score < -2.8

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_boston_test_dictionaries = df_boston_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -3.5

    assert lower_bound < first_score < -2.8

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_boston_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() / 1.0 < 60

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -2.8
Beispiel #22
0
df_train, df_test = get_boston_dataset()

# Tell auto_ml which column is 'output'
# Also note columns that aren't purely numerical
# Examples include ['nlp', 'date', 'categorical', 'ignore']
column_descriptions = {
  'MEDV': 'output'
  , 'CHAS': 'categorical'
}

ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions)

ml_predictor.train(df_train)

# Score the model on test data
test_score = ml_predictor.score(df_test, df_test.MEDV)

# auto_ml is specifically tuned for running in production
# It can get predictions on an individual row (passed in as a dictionary)
# A single prediction like this takes ~1 millisecond
# Here we will demonstrate saving the trained model, and loading it again
file_name = ml_predictor.save()

trained_model = load_ml_model(file_name)

# .predict and .predict_proba take in either:
# A pandas DataFrame
# A list of dictionaries
# A single dictionary (optimized for speed in production evironments)
predictions = trained_model.predict(df_test)
print(predictions)