Beispiel #1
0
    def on_batch_end(self, runner: "IRunner") -> None:
        """On batch end event

        Args:
            runner: current runner
        """
        # Drop the cache when we exit to a nesting level
        # that's outside any instance of autocast.
        if torch.autocast_decrement_nesting() == 0:
            torch.clear_autocast_cache()
        torch.set_autocast_enabled(self.prev_autocast_state)

        if not runner.is_train_loader:
            return

        loss = runner.batch_metrics[self.metric_key]

        self._accumulation_counter += 1
        need_gradient_step = (
            self._accumulation_counter % self.accumulation_steps == 0
        )

        self.scaler.scale(loss).backward()

        if need_gradient_step:
            self.grad_step(
                optimizer=self._optimizer, grad_clip_fn=self.grad_clip_fn,
            )
            if not self.use_fast_zero_grad:
                maybe_recursive_call(self._optimizer, "zero_grad")
            else:
                maybe_recursive_call(self._optimizer, zero_grad)
            self._accumulation_counter = 0
Beispiel #2
0
    def on_loader_start(self, runner: "IRunner"):
        """Event handler for loader start.

        Args:
            runner: IRunner instance.

        Raises:
            RunnerException: if current DataLoader is empty.
        """
        assert self.loader is not None

        self.loader_len = len(self.loader)
        if self.loader_len == 0:
            raise RunnerException(
                f"DataLoader with name {self.loader_key} is empty.")
        self.loader_batch_size = (self.loader.batch_sampler.batch_size
                                  if self.loader.batch_sampler is not None else
                                  self.loader.batch_size)
        self.loader_sample_step = 0

        self.is_train_loader = self.loader_key.startswith(
            SETTINGS.loader_train_prefix)
        self.is_valid_loader = self.loader_key.startswith(
            SETTINGS.loader_valid_prefix)
        self.is_infer_loader = self.loader_key.startswith(
            SETTINGS.loader_infer_prefix)
        maybe_recursive_call(self.model, "train", mode=self.is_train_loader)

        if isinstance(self.loader.sampler, DistributedSampler):
            self.loader.sampler.set_epoch(self.epoch)

        set_global_seed(self.experiment.initial_seed + self.global_epoch + 1)
def unpack_checkpoint(checkpoint,
                      model=None,
                      criterion=None,
                      optimizer=None,
                      scheduler=None):
    """@TODO: Docs. Contribution is welcome."""
    if model is not None:
        model = get_nn_from_ddp_module(model)
        maybe_recursive_call(
            model,
            "load_state_dict",
            recursive_args=checkpoint["model_state_dict"],
        )

    for dict2load, name2load in zip(
        [criterion, optimizer, scheduler],
        ["criterion", "optimizer", "scheduler"],
    ):
        if dict2load is None:
            continue

        if isinstance(dict2load, dict):
            for key, value in dict2load.items():
                if value is not None:
                    state_dict2load = f"{name2load}_{key}_state_dict"
                    value.load_state_dict(checkpoint[state_dict2load])
        else:
            name2load = f"{name2load}_state_dict"
            dict2load.load_state_dict(checkpoint[name2load])
Beispiel #4
0
    def predict_loader(
        self,
        *,
        loader: DataLoader,
        model: Model = None,
        resume: str = None,
        fp16: Union[Dict, bool] = None,
        initial_seed: int = 42,
    ) -> Generator:
        """
        Runs model inference on PyTorch Dataloader and returns
        python generator with model predictions from `runner.predict_batch`.
        Cleans up the experiment info to avoid possible collisions.
        Sets `is_train_loader` and `is_valid_loader` to `False` while
        keeping `is_infer_loader` as True. Moves model to evaluation mode.

        Args:
            loader: loader to predict
            model: model to use for prediction
            resume: path to checkpoint to resume
            fp16 (Union[Dict, bool]): fp16 usage flag
            initial_seed: seed to use before prediction

        Yields:
            bathes with model predictions
        """
        if isinstance(fp16, bool) and fp16:
            fp16 = {"opt_level": "O1"}

        if model is not None:
            self.model = model
        assert self.model is not None

        if resume is not None:
            checkpoint = load_checkpoint(resume)
            unpack_checkpoint(checkpoint, model=self.model)

        self.experiment = None
        set_global_seed(initial_seed)
        (model, _, _, _, device) = process_components(  # noqa: WPS122
            model=self.model,
            distributed_params=fp16,
            device=self.device,
        )
        self._prepare_inner_state(
            stage="infer",
            model=model,
            device=device,
            is_train_loader=False,
            is_valid_loader=False,
            is_infer_loader=True,
        )
        maybe_recursive_call(self.model, "train", mode=False)

        set_global_seed(initial_seed)
        for batch in loader:
            yield self.predict_batch(batch)
Beispiel #5
0
def pack_checkpoint(
    model: nn.Module = None,
    criterion: nn.Module = None,
    optimizer=None,
    scheduler=None,
    **kwargs,
):
    """
    Packs ``model``, ``criterion``, ``optimizer``, ``scheduler``
    and some extra info ``**kwargs`` to torch-based checkpoint.

    Args:
        model: torch model
        criterion: torch criterion
        optimizer: torch optimizer
        scheduler: torch scheduler
        **kwargs: some extra info to pack

    Returns:
        torch-based checkpoint with ``model_state_dict``,
        ``criterion_state_dict``, ``optimizer_state_dict``,
        ``scheduler_state_dict`` keys.
    """
    checkpoint = kwargs

    if isinstance(model, dict):
        for key, value in model.items():
            model_module = get_nn_from_ddp_module(value)
            checkpoint[f"model_{key}_state_dict"] = maybe_recursive_call(
                model_module, "state_dict")
    else:
        model_module = get_nn_from_ddp_module(model)
        checkpoint["model_state_dict"] = maybe_recursive_call(
            model_module, "state_dict")

    for dict2save, name2save in zip(
        [criterion, optimizer, scheduler],
        ["criterion", "optimizer", "scheduler"],
    ):
        if dict2save is None:
            continue
        # @TODO refactor with maybe_recursive_call (?)
        if isinstance(dict2save, dict):
            for key, value in dict2save.items():
                if value is not None:
                    state_dict2save = name2save + "_" + str(key)
                    # checkpoint[name2save_] = value
                    state_dict2save = state_dict2save + "_state_dict"
                    checkpoint[state_dict2save] = value.state_dict()
        else:
            # checkpoint[name2save] = dict2save
            name2save = name2save + "_state_dict"
            checkpoint[name2save] = dict2save.state_dict()

    return checkpoint
Beispiel #6
0
    def _run_epoch(self, stage: str, epoch: int) -> None:
        """
        Inner method to run epoch on Runner,
        with epoch callbacks events.

        Args:
            stage: stage name of interest,
                like "pretrain" / "train" / "finetune" / etc
            epoch: epoch index
        """
        self._prepare_for_epoch(stage=stage, epoch=epoch)
        assert self.loaders is not None

        for loader_name, loader in self.loaders.items():
            if len(loader) == 0:
                raise RunnerException(
                    f"DataLoader with name {loader_name} is empty.")

        self.is_infer_stage = self.stage_name.startswith("infer")
        if not self.is_infer_stage:
            assert self.valid_loader in self.loaders.keys(), (
                f"'{self.valid_loader}' "
                f"should be in provided loaders: {list(self.loaders.keys())}")
        else:
            assert not any(
                x.startswith(SETTINGS.loader_train_prefix)
                for x in self.loaders.keys()
            ), "for inference no train loader should be passed"

        for loader_name, loader in self.loaders.items():
            self.loader_name = loader_name
            self.loader_len = len(loader)
            self.is_train_loader = loader_name.startswith(
                SETTINGS.loader_train_prefix)
            self.is_valid_loader = loader_name.startswith(
                SETTINGS.loader_valid_prefix)
            self.is_infer_loader = loader_name.startswith(
                SETTINGS.loader_infer_prefix)
            maybe_recursive_call(
                self.model,
                "train",
                mode=self.is_train_loader,
            )

            if (isinstance(loader.sampler, DistributedSampler)
                    and not self.is_infer_stage):
                loader.sampler.set_epoch(self.epoch)

            set_global_seed(self.experiment.initial_seed + self.global_epoch +
                            1)
            self._run_event("on_loader_start")
            with torch.set_grad_enabled(self.is_train_loader):
                self._run_loader(loader)
            self._run_event("on_loader_end")
Beispiel #7
0
    def predict_loader(
        self,
        *,
        loader: DataLoader,
        model: TorchModel = None,
        engine: Union["Engine", str] = None,
        seed: int = 42,
        # extra info
        resume: str = None,
        # engine extra params,
        cpu: bool = False,
        fp16: bool = False,
    ) -> Generator:
        """
        Runs model inference on PyTorch DataLoader and returns
        python generator with model predictions from `runner.predict_batch`.

        Args:
            loader: loader to predict
            model: model to use for prediction
            engine: engine to use for prediction
            seed: random seed to use before prediction
            resume: path to checkpoint for model
            cpu: boolean flag to force CPU usage
            fp16: boolean flag to use half-precision

        Yields:
            bathes with model predictions

        .. note::
            Please follow the `minimal examples`_ sections for use cases.

            .. _`minimal examples`: https://github.com/catalyst-team/catalyst#minimal-examples  # noqa: E501, W505
        """
        self.engine = engine or get_available_engine(cpu=cpu, fp16=fp16)

        if model is not None:
            self.model = model
        assert self.model is not None

        if resume is not None:
            self.engine.wait_for_everyone()
            unwrapped_model = self.engine.unwrap_model(self.model)
            unwrapped_model.load_state_dict(load_checkpoint(resume))

        self.model = self.engine.prepare(self.model)
        maybe_recursive_call(self.model, "train", mode=False)
        loader = self.engine.prepare(loader)

        set_global_seed(seed)
        for batch in loader:
            yield self.predict_batch(batch)
Beispiel #8
0
    def on_batch_end(self, runner: "IRunner") -> None:
        """On batch end event

        Args:
            runner: current runner
        """
        if self.use_amp:
            # Drop the cache when we exit to a nesting level
            # that's outside any instance of autocast.
            if torch.autocast_decrement_nesting() == 0:
                torch.clear_autocast_cache()
            torch.set_autocast_enabled(self.prev_autocast_state)

        if not runner.is_train_loader:
            return

        loss = runner.batch_metrics[self.metric_key]

        self._accumulation_counter += 1
        need_gradient_step = (self._accumulation_counter %
                              self.accumulation_steps == 0)

        # @TODO: speedup with re-definition ``on_stage_start``
        if self.use_apex:
            from apex import amp

            # Need to set ``delay_unscale``
            # according to
            # https://nvidia.github.io/apex/advanced.html#gradient-accumulation-across-iterations
            delay_unscale = not need_gradient_step
            with amp.scale_loss(loss,
                                self._optimizer,
                                delay_unscale=delay_unscale) as scaled_loss:
                scaled_loss.backward()
        elif self.use_amp:
            self.scaler.scale(loss).backward()
        else:
            loss.backward()

        if need_gradient_step:
            self.grad_step(
                optimizer=self._optimizer,
                grad_clip_fn=self.grad_clip_fn,
            )
            if not self.use_fast_zero_grad:
                maybe_recursive_call(self._optimizer, "zero_grad")
            else:
                maybe_recursive_call(self._optimizer, zero_grad)
            self._accumulation_counter = 0
Beispiel #9
0
    def predict_loader(
        self,
        *,
        loader: DataLoader,
        model: Model = None,
        engine: Union["IEngine", str] = None,
        seed: int = 42,
        # engine extra params,
        fp16: bool = False,
        amp: bool = False,
        apex: bool = False,
        ddp: bool = False,
    ) -> Generator:
        """
        Runs model inference on PyTorch DataLoader and returns
        python generator with model predictions from `runner.predict_batch`.

        Args:
            loader: loader to predict
            model: model to use for prediction
            engine: engine to use for prediction
            seed: random seed to use before prediction
            fp16: boolean flag to use half-precision training (AMP > APEX)
            amp: boolean flag to use amp half-precision
            apex: boolean flag to use apex half-precision
            ddp: if `True` will start training in distributed mode.
                Note: Works only with python scripts. No jupyter support.

        Yields:
            bathes with model predictions
        """
        self._engine = engine or get_available_engine(
            fp16=fp16, ddp=ddp, amp=amp, apex=apex)

        if model is not None:
            self.model = model
        assert self.model is not None

        # if resume is not None:
        #     checkpoint = load_checkpoint(resume)
        #     unpack_checkpoint(checkpoint, model=self.model)

        self.model = self.engine.sync_device(self.model)
        maybe_recursive_call(self.model, "train", mode=False)

        set_global_seed(seed)
        for batch in loader:
            yield self.predict_batch(batch)
Beispiel #10
0
def pack_checkpoint(model=None,
                    criterion=None,
                    optimizer=None,
                    scheduler=None,
                    **kwargs):
    """@TODO: Docs. Contribution is welcome."""
    checkpoint = kwargs

    if isinstance(model, OrderedDict):
        raise NotImplementedError()
    else:
        model_module = get_nn_from_ddp_module(model)
        checkpoint["model_state_dict"] = maybe_recursive_call(
            model_module, "state_dict")

    for dict2save, name2save in zip(
        [criterion, optimizer, scheduler],
        ["criterion", "optimizer", "scheduler"],
    ):
        if dict2save is None:
            continue
        # @TODO refactor with maybe_recursive_call
        if isinstance(dict2save, dict):
            for key, value in dict2save.items():
                if value is not None:
                    state_dict2save = name2save + "_" + str(key)
                    # checkpoint[name2save_] = value
                    state_dict2save = state_dict2save + "_state_dict"
                    checkpoint[state_dict2save] = value.state_dict()
        else:
            # checkpoint[name2save] = dict2save
            name2save = name2save + "_state_dict"
            checkpoint[name2save] = dict2save.state_dict()

    return checkpoint
Beispiel #11
0
    def device(self, value: Device):
        """
        Setter for the runner's device.

        Args:
            value: new torch device.

        Raises:
            TypeError: if `value` is out of `torch.device`, `str` or `None`
        """
        if isinstance(value, torch.device):
            self._device = value
        elif isinstance(value, str):
            self._device = torch.device(value)
        elif isinstance(value, type(None)):
            self._device = None
        else:
            raise TypeError(f"Invalid value type "
                            f"must be `str` or `torch.device` "
                            f"got '{type(value)}'")

        if self._model is not None:
            self._model = maybe_recursive_call(self._model,
                                               "to",
                                               device=self._device or "cpu")
Beispiel #12
0
    def model(self, value: Union[Model, Dict[str, Model]]):
        """
        Setter for the runner's model, useful for experiment tracing.

        Args:
            value (Union[Model, Dict[str, Model]]): new model.

        Raises:
            TypeError: if value is out of
                `torch.nn.Module` or `Dict[str, torch.nn.Module]`
        """
        if isinstance(value, nn.Module):
            model = value
        elif isinstance(value, dict):
            values_are_models = all(
                isinstance(v, nn.Module) for v in value.values())
            if not values_are_models:
                raise TypeError(
                    "Invalid dict value type, must be `torch.nn.Module`")

            model = value
        elif isinstance(value, type(None)):
            model = None
        else:
            raise TypeError(
                f"Invalid value type "
                f"must be `torch.nn.Module` or `Dict[str, torch.nn.Module]` "
                f"got '{type(value)}'")

        if model is not None and self._device is not None:
            model: Model = maybe_recursive_call(model,
                                                "to",
                                                device=self._device)

        self._model = model
Beispiel #13
0
    def on_batch_end(self, runner: "IRunner") -> None:
        """On batch end event

        Args:
            runner: current runner
        """
        if not runner.is_train_loader:
            return

        loss = runner.batch_metrics[self.metric_key]

        self._accumulation_counter += 1
        need_gradient_step = (
            self._accumulation_counter % self.accumulation_steps == 0
        )

        # This is very hacky check whether we have AMP optimizer and this may
        # change in future.
        # But alternative solution is to have AmpOptimizerCallback.
        # or expose another c'tor argument.
        # @TODO: speedup with re-definition ``on_stage_start``
        if hasattr(self._optimizer, "_amp_stash"):
            from apex import amp

            # Need to set ``delay_unscale``
            # according to
            # https://nvidia.github.io/apex/advanced.html#gradient-accumulation-across-iterations
            delay_unscale = not need_gradient_step
            with amp.scale_loss(
                loss, self._optimizer, delay_unscale=delay_unscale
            ) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        if need_gradient_step:
            self.grad_step(
                optimizer=self._optimizer,
                optimizer_wds=self._optimizer_wd,
                grad_clip_fn=self.grad_clip_fn,
            )
            if not self.use_fast_zero_grad:
                maybe_recursive_call(self._optimizer, "zero_grad")
            else:
                maybe_recursive_call(self._optimizer, zero_grad)
            self._accumulation_counter = 0
Beispiel #14
0
def _process_trial_config(trial, config: Dict) -> Tuple[optuna.Trial, Dict]:
    def _eval_trial_suggestions(x):
        nonlocal trial
        if isinstance(x, str) and "trial.suggest_" in x:
            x = eval(x)
        return x

    config = maybe_recursive_call(config, _eval_trial_suggestions)
    return trial, config
Beispiel #15
0
def unpack_checkpoint(
    checkpoint: Dict,
    model: RunnerModel = None,
    criterion: RunnerCriterion = None,
    optimizer: RunnerOptimizer = None,
    scheduler: RunnerScheduler = None,
) -> None:
    """Load checkpoint from file and unpack the content to a model
    (if not None), criterion (if not None), optimizer (if not None),
    scheduler (if not None).

    Args:
        checkpoint: checkpoint to load
        model: model where should be updated state
        criterion: criterion where should be updated state
        optimizer: optimizer where should be updated state
        scheduler: scheduler where should be updated state
    """
    if model is not None:
        model = get_nn_from_ddp_module(model)
        maybe_recursive_call(
            model,
            "load_state_dict",
            recursive_args=checkpoint["model_state_dict"],
        )

    for dict2load, name2load in zip(
        [criterion, optimizer, scheduler],
        ["criterion", "optimizer", "scheduler"],
    ):
        if dict2load is None:
            continue

        if isinstance(dict2load, dict):
            for key, value in dict2load.items():
                if value is not None:
                    state_dict2load = f"{name2load}_{key}_state_dict"
                    value.load_state_dict(checkpoint[state_dict2load])
        else:
            name2load = f"{name2load}_state_dict"
            dict2load.load_state_dict(checkpoint[name2load])
Beispiel #16
0
    def predict_loader(
        self,
        *,
        loader: DataLoader,
        model: Model = None,
        engine: Union["IEngine", str] = None,
        seed: int = 42,
    ) -> Generator:
        """
        Runs model inference on PyTorch DataLoader and returns
        python generator with model predictions from `runner.predict_batch`.

        Args:
            loader: loader to predict
            model: model to use for prediction
            engine: engine to use for prediction
            seed: random seed to use before prediction

        Yields:
            bathes with model predictions
        """
        if engine is not None:
            self.engine = engine
        if self.engine is None:
            self.engine = get_available_engine()

        if model is not None:
            self.model = model
        assert self.model is not None

        # if resume is not None:
        #     checkpoint = load_checkpoint(resume)
        #     unpack_checkpoint(checkpoint, model=self.model)

        self.model = self.engine.sync_device(self.model)
        maybe_recursive_call(self.model, "train", mode=False)

        set_global_seed(seed)
        for batch in loader:
            yield self.predict_batch(batch)
Beispiel #17
0
    def on_loader_start(self, runner: "IRunner"):
        """Event handler."""
        assert self.loader is not None
        self.is_train_loader: bool = self.loader_key.startswith("train")
        self.is_valid_loader: bool = self.loader_key.startswith("valid")
        self.is_infer_loader: bool = self.loader_key.startswith("infer")
        assert self.is_train_loader or self.is_valid_loader or self.is_infer_loader
        self.loader_batch_size: int = _get_batch_size(self.loader)
        self.loader_batch_len: int = len(self.loader)
        self.loader_sample_len: int = len(self.loader.dataset)
        self.loader_batch_step: int = 0
        self.loader_sample_step: int = 0
        self.loader_metrics: Dict = defaultdict(None)

        if self.loader_batch_len == 0:
            raise NotImplementedError(f"DataLoader with name {self.loader_key} is empty.")
        set_global_seed(self.seed + self.engine.rank + self.global_epoch_step)

        maybe_recursive_call(self.model, "train", mode=self.is_train_loader)
        if isinstance(self.loader.sampler, DistributedSampler):
            self.loader.sampler.set_epoch(self.stage_epoch_step)
        self.loader = self.engine.autocast_loader(self.loader)
Beispiel #18
0
    def on_loader_start(self, runner: "IRunner"):
        """Event handler."""
        assert self.loader is not None
        self.is_train_loader: bool = self.loader_key.startswith("train")
        self.is_valid_loader: bool = self.loader_key.startswith("valid")
        self.is_infer_loader: bool = self.loader_key.startswith("infer")
        assert self.is_train_loader or self.is_valid_loader or self.is_infer_loader
        self.loader_batch_size: int = get_loader_batch_size(self.loader)
        self.loader_batch_len: int = len(self.loader)
        self.loader_sample_len: int = get_loader_num_samples(self.loader)
        self.loader_batch_step: int = 0
        self.loader_sample_step: int = 0
        self.loader_metrics: Dict = defaultdict(None)

        if self.loader_batch_len == 0:
            raise IRunnerError(
                f"DataLoader with name {self.loader_key} is empty.")
        set_global_seed(self.seed + max(0, self.engine.process_index) +
                        self.epoch_step)

        maybe_recursive_call(self.model, "train", mode=self.is_train_loader)
        if isinstance(self.loader.sampler, DistributedSampler):
            self.loader.sampler.set_epoch(self.epoch_step)
def process_components(
    model: Model,
    criterion: Criterion = None,
    optimizer: Optimizer = None,
    scheduler: Scheduler = None,
    distributed_params: Dict = None,
    device: Device = None,
) -> Tuple[Model, Criterion, Optimizer, Scheduler, Device]:
    """
    Returns the processed model, criterion, optimizer, scheduler and device.

    Args:
        model (Model): torch model
        criterion (Criterion): criterion function
        optimizer (Optimizer): optimizer
        scheduler (Scheduler): scheduler
        distributed_params (dict, optional): dict with the parameters
            for distributed and FP16 method
        device (Device, optional): device

    Returns:
        tuple with processed model, criterion, optimizer, scheduler and device.

    Raises:
        NotImplementedError: if model is not nn.Module or dict for multi-gpu,
            nn.ModuleDict for DataParallel not implemented yet
    """
    distributed_params = distributed_params or {}
    distributed_params = copy.deepcopy(distributed_params)
    distributed_params.update(get_distributed_params())

    if device is None:
        device = get_device()
    elif isinstance(device, str):
        device = torch.device(device)

    is_apex_available = (distributed_params.pop("apex", True)
                         and check_apex_available())

    model: Model = maybe_recursive_call(model, "to", device=device)

    if check_ddp_wrapped(model):
        pass
    # distributed data parallel run (ddp) (with apex support)
    elif get_rank() >= 0:
        assert isinstance(
            model,
            nn.Module), "Distributed training is not available for KV model"

        local_rank = distributed_params.pop("local_rank", 0) or 0
        device = f"cuda:{local_rank}"
        model = maybe_recursive_call(model, "to", device=device)

        syncbn = distributed_params.pop("syncbn", False)

        if is_apex_available:
            import apex

            model, optimizer = initialize_apex(model, optimizer,
                                               **distributed_params)
            model = apex.parallel.DistributedDataParallel(model)

            if syncbn:
                model = apex.parallel.convert_syncbn_model(model)
        else:
            model = nn.parallel.DistributedDataParallel(
                model, device_ids=[local_rank], output_device=local_rank)
    # data parallel run (dp) (with apex support)
    else:
        # apex issue https://github.com/deepset-ai/FARM/issues/210
        use_apex = (is_apex_available and torch.cuda.device_count() == 1) or (
            is_apex_available and torch.cuda.device_count() > 1
            and distributed_params.get("opt_level", "O0") == "O1")

        if use_apex:
            assert isinstance(
                model,
                nn.Module), "Apex training is not available for KV model"

            model, optimizer = initialize_apex(model, optimizer,
                                               **distributed_params)

        if (torch.cuda.device_count() > 1 and device.type != "cpu"
                and device.index is None):
            if isinstance(model, nn.Module):
                model = nn.DataParallel(model)
            elif isinstance(model, dict):
                model = {k: nn.DataParallel(v) for k, v in model.items()}
            else:
                raise NotImplementedError()

    model: Model = maybe_recursive_call(model, "to", device=device)

    return model, criterion, optimizer, scheduler, device
Beispiel #20
0
    def predict_loader(
        self,
        *,
        loader: DataLoader,
        model: Model = None,
        engine: Union["IEngine", str] = None,
        seed: int = 42,
        # engine extra params,
        fp16: bool = False,
        amp: bool = False,
        apex: bool = False,
        ddp: bool = False,
    ) -> Generator:
        """
        Runs model inference on PyTorch DataLoader and returns
        python generator with model predictions from `runner.predict_batch`.

        Args:
            loader: loader to predict
            model: model to use for prediction
            engine: engine to use for prediction
            seed: random seed to use before prediction
            fp16: boolean flag to use half-precision training (AMP > APEX)
            amp: boolean flag to use amp half-precision
            apex: boolean flag to use apex half-precision
            ddp: if `True` will start training in distributed mode.
                Note: Works only with python scripts. No jupyter support.

        Yields:
            bathes with model predictions

        .. note::
            Please follow the `minimal examples`_ sections for use cases.

            .. _`minimal examples`: https://github.com/catalyst-team/catalyst#minimal-examples

        Examples:

        .. code-block:: python

            import os
            from torch import nn, optim
            from torch.nn import functional as F
            from torch.utils.data import DataLoader
            from catalyst import dl, metrics
            from catalyst.data.transforms import ToTensor
            from catalyst.contrib.datasets import MNIST

            model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
            optimizer = optim.Adam(model.parameters(), lr=0.02)

            loaders = {
                "train": DataLoader(
                    MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
                    batch_size=32
                ),
                "valid": DataLoader(
                    MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
                    batch_size=32
                ),
            }

            class CustomRunner(dl.Runner):
                def predict_batch(self, batch):
                    # model inference step
                    return self.model(batch[0].to(self.device))

                def on_loader_start(self, runner):
                    super().on_loader_start(runner)
                    self.meters = {
                        key: metrics.AdditiveValueMetric(compute_on_call=False)
                        for key in ["loss", "accuracy01", "accuracy03"]
                    }

                def handle_batch(self, batch):
                    # model train/valid step
                    # unpack the batch
                    x, y = batch
                    # run model forward pass
                    logits = self.model(x)
                    # compute the loss
                    loss = F.cross_entropy(logits, y)
                    # compute other metrics of interest
                    accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
                    # log metrics
                    self.batch_metrics.update(
                        {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
                    )
                    for key in ["loss", "accuracy01", "accuracy03"]:
                        self.meters[key].update(
                            self.batch_metrics[key].item(),
                            self.batch_size
                        )
                    # run model backward pass
                    if self.is_train_loader:
                        loss.backward()
                        self.optimizer.step()
                        self.optimizer.zero_grad()

                def on_loader_end(self, runner):
                    for key in ["loss", "accuracy01", "accuracy03"]:
                        self.loader_metrics[key] = self.meters[key].compute()[0]
                    super().on_loader_end(runner)

            runner = CustomRunner()
            # model training
            runner.train(
                model=model,
                optimizer=optimizer,
                loaders=loaders,
                logdir="./logs",
                num_epochs=5,
                verbose=True,
                valid_loader="valid",
                valid_metric="loss",
                minimize_valid_metric=True,
            )
            # model inference
            for logits in runner.predict_loader(loader=loaders["valid"]):
                assert logits.detach().cpu().numpy().shape[-1] == 10
        """
        self._engine = engine or get_available_engine(fp16=fp16, ddp=ddp, amp=amp, apex=apex)

        if model is not None:
            self.model = model
        assert self.model is not None

        # if resume is not None:
        #     checkpoint = load_checkpoint(resume)
        #     unpack_checkpoint(checkpoint, model=self.model)

        self.model = self.engine.sync_device(self.model)
        maybe_recursive_call(self.model, "train", mode=False)

        set_global_seed(seed)
        for batch in loader:
            yield self.predict_batch(batch)
Beispiel #21
0
def process_components(
    model: RunnerModel,
    criterion: Criterion = None,
    optimizer: Optimizer = None,
    scheduler: Scheduler = None,
    distributed_params: Dict = None,
    device: Device = None,
) -> Tuple[RunnerModel, Criterion, Optimizer, Scheduler, Device]:
    """
    Returns the processed model, criterion, optimizer, scheduler and device.

    Args:
        model: torch model
        criterion: criterion function
        optimizer: optimizer
        scheduler: scheduler
        distributed_params (dict, optional): dict with the parameters
            for distributed and FP16 method
        device (Device, optional): device

    Returns:
        tuple with processed model, criterion, optimizer, scheduler and device.

    Raises:
        ValueError: if device is None and TPU available,
            for using TPU need to manualy move model/optimizer/scheduler
            to a TPU device and pass device to a function.
        NotImplementedError: if model is not nn.Module or dict for multi-gpu,
            nn.ModuleDict for DataParallel not implemented yet
    """
    distributed_params = distributed_params or {}
    distributed_params = copy.deepcopy(distributed_params)
    distributed_params.update(get_distributed_params())

    if device is None and IS_XLA_AVAILABLE:
        raise ValueError(
            "TPU device is available. "
            "Please move model, optimizer and scheduler (if present) "
            "to TPU device manualy and specify a device or "
            "use CPU device.")

    if device is None:
        device = get_device()
    elif isinstance(device, str):
        device = torch.device(device)

    is_apex_enabled = (distributed_params.get("apex", False)
                       and check_apex_available())

    is_amp_enabled = (distributed_params.get("amp", False)
                      and check_amp_available())

    if is_apex_enabled and is_amp_enabled:
        raise ValueError("Both NVidia Apex and Torch.Amp are enabled. "
                         "You must choose only one mixed precision backend")
    model: Model = maybe_recursive_call(model, "to", device=device)

    if check_ddp_wrapped(model):
        pass
    # distributed data parallel run (ddp) (with apex support)
    elif get_rank() >= 0:
        assert isinstance(
            model,
            nn.Module), "Distributed training is not available for KV model"

        local_rank = distributed_params.pop("local_rank", 0) or 0
        device = f"cuda:{local_rank}"
        model = maybe_recursive_call(model, "to", device=device)

        syncbn = distributed_params.pop("syncbn", False)

        if is_apex_enabled:
            import apex

            if syncbn:
                model = apex.parallel.convert_syncbn_model(model)

            model, optimizer = initialize_apex(model, optimizer,
                                               **distributed_params)
            model = apex.parallel.DistributedDataParallel(model)
        else:
            if syncbn:
                model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

            model = nn.parallel.DistributedDataParallel(
                model, device_ids=[local_rank], output_device=local_rank)
    # data parallel run (dp) (with apex support)
    else:
        is_data_parallel = (torch.cuda.device_count() > 1
                            and device.type != "cpu" and device.index is None)

        if is_apex_enabled and not is_data_parallel:
            model, optimizer = initialize_apex(model, optimizer,
                                               **distributed_params)

        elif not is_apex_enabled and is_data_parallel:
            if isinstance(model, nn.Module):
                model = nn.DataParallel(model)
            elif isinstance(model, dict):
                model = {k: nn.DataParallel(v) for k, v in model.items()}
            else:
                raise NotImplementedError()

        elif is_apex_enabled and is_data_parallel:
            model, optimizer = _wrap_into_data_parallel_with_apex(
                model, optimizer, distributed_params)

    model: Model = maybe_recursive_call(model, "to", device=device)

    return model, criterion, optimizer, scheduler, device