def test_n_jobs_not_new_model():
    grid_config = {
        'sklearn.ensemble.AdaBoostClassifier': {
            'n_estimators': [10, 100, 1000]
        },
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [10, 100],
            'max_features': ['sqrt', 'log2'],
            'max_depth': [5, 10, 15, 20],
            'criterion': ['gini', 'entropy'],
            'n_jobs': [12, 24],
        }
    }

    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=S3ModelStorageEngine(s3_conn, 'econ-dev/inspections'),
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )

            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            train_tasks = trainer.generate_train_tasks(
                grid_config,
                dict(),
                InMemoryMatrixStore(matrix, {
                    'label_timespan': '1d',
                    'end_time': datetime.datetime.now(),
                    'feature_start_time': datetime.date(2012, 12, 20),
                    'label_name': 'label',
                    'metta-uuid': '1234',
                    'feature_names': ['ft1', 'ft2'],
                    'indices': ['entity_id'],
                })
            )
            assert len(train_tasks) == 35 # 32+3, would be (32*2)+3 if we didn't remove
            assert len([
                task for task in train_tasks
                if 'n_jobs' in task['parameters']
            ]) == 32

            for train_task in train_tasks:
                trainer.process_train_task(**train_task)

            for row in engine.execute(
                'select model_parameters from results.model_groups'
            ):
                assert 'n_jobs' not in row[0]
Beispiel #2
0
def test_integration():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            project_path = 'econ-dev/inspections'

            # create train and test matrices
            train_matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            train_metadata = {
                'beginning_of_time': datetime.date(2012, 12, 20),
                'end_time': datetime.date(2016, 12, 20),
                'label_name': 'label',
                'label_window': '1y',
                'feature_names': ['ft1', 'ft2'],
                'metta-uuid': '1234',
            }

            train_store = InMemoryMatrixStore(train_matrix, train_metadata)

            as_of_dates = [
                datetime.date(2016, 12, 21),
                datetime.date(2017, 1, 21)
            ]

            test_stores = [
                InMemoryMatrixStore(
                    pandas.DataFrame.from_dict({
                        'entity_id': [3],
                        'feature_one': [8],
                        'feature_two': [5],
                        'label': [5]
                    }).set_index('entity_id'), {
                        'label_name': 'label',
                        'label_window': '1y',
                        'end_time': as_of_date,
                        'metta-uuid': '1234',
                    }) for as_of_date in as_of_dates
            ]

            model_storage_engine = S3ModelStorageEngine(s3_conn, project_path)

            experiment_hash = save_experiment_and_get_hash({}, db_engine)
            # instantiate pipeline objects
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=experiment_hash,
                model_storage_engine=model_storage_engine,
                db_engine=db_engine,
                model_group_keys=['label_name', 'label_window'])
            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)
            model_evaluator = ModelEvaluator([{
                'metrics': ['precision@'],
                'thresholds': {
                    'top_n': [5]
                }
            }], db_engine)

            # run the pipeline
            grid_config = {
                'sklearn.linear_model.LogisticRegression': {
                    'C': [0.00001, 0.0001],
                    'penalty': ['l1', 'l2'],
                    'random_state': [2193]
                }
            }
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=train_store)

            for model_id in model_ids:
                for as_of_date, test_store in zip(as_of_dates, test_stores):
                    predictions_proba = predictor.predict(
                        model_id,
                        test_store,
                        misc_db_parameters=dict(),
                        train_matrix_columns=['feature_one', 'feature_two'])

                    model_evaluator.evaluate(predictions_proba,
                                             test_store.labels(), model_id,
                                             as_of_date, as_of_date, '6month')

            # assert
            # 1. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row for row in db_engine.execute(
                    '''select entity_id, model_id, as_of_date
                from results.predictions
                join results.models using (model_id)
                order by 3, 2''')
            ]
            assert records == [
                (3, 1, datetime.datetime(2016, 12, 21)),
                (3, 2, datetime.datetime(2016, 12, 21)),
                (3, 3, datetime.datetime(2016, 12, 21)),
                (3, 4, datetime.datetime(2016, 12, 21)),
                (3, 1, datetime.datetime(2017, 1, 21)),
                (3, 2, datetime.datetime(2017, 1, 21)),
                (3, 3, datetime.datetime(2017, 1, 21)),
                (3, 4, datetime.datetime(2017, 1, 21)),
            ]

            # that evaluations are there
            records = [
                row for row in db_engine.execute('''
                    select model_id, evaluation_start_time, metric, parameter
                    from results.evaluations order by 2, 1''')
            ]
            assert records == [
                (1, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (1, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            ]
Beispiel #3
0
def test_predictor():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(s3_conn, project_path)
            _, model_id = \
                fake_trained_model(project_path, model_storage_engine, db_engine)
            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)
            # create prediction set
            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            metadata = {
                'label_name': 'label',
                'end_time': AS_OF_DATE,
                'label_window': '3month',
                'metta-uuid': '1234',
            }

            matrix_store = InMemoryMatrixStore(matrix, metadata)
            train_matrix_columns = ['feature_one', 'feature_two']
            predict_proba = predictor.predict(
                model_id,
                matrix_store,
                misc_db_parameters=dict(),
                train_matrix_columns=train_matrix_columns)

            # assert
            # 1. that the returned predictions are of the desired length
            assert len(predict_proba) == 2

            # 2. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row
                for row in db_engine.execute('''select entity_id, as_of_date
                from results.predictions
                join results.models using (model_id)''')
            ]
            assert len(records) == 2

            # 3. that the contained as_of_dates match what we sent in
            for record in records:
                assert record[1].date() == AS_OF_DATE

            # 4. that the entity ids match the given dataset
            assert sorted([record[0] for record in records]) == [1, 2]

            # 5. running with same model_id, different as of date
            # then with same as of date only replaces the records
            # with the same date
            new_matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            new_metadata = {
                'label_name': 'label',
                'end_time': AS_OF_DATE + datetime.timedelta(days=1),
                'label_window': '3month',
                'metta-uuid': '1234',
            }
            new_matrix_store = InMemoryMatrixStore(new_matrix, new_metadata)
            predictor.predict(model_id,
                              new_matrix_store,
                              misc_db_parameters=dict(),
                              train_matrix_columns=train_matrix_columns)
            predictor.predict(model_id,
                              matrix_store,
                              misc_db_parameters=dict(),
                              train_matrix_columns=train_matrix_columns)
            records = [
                row
                for row in db_engine.execute('''select entity_id, as_of_date
                from results.predictions
                join results.models using (model_id)''')
            ]
            assert len(records) == 4

            # 6. That we can delete the model when done prediction on it
            predictor.delete_model(model_id)
            assert predictor.load_model(model_id) == None
def test_model_trainer():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)

        grid_config = {
            'sklearn.linear_model.LogisticRegression': {
                'C': [0.00001, 0.0001],
                'penalty': ['l1', 'l2'],
                'random_state': [2193]
            }
        }

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            # create training set
            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': ['good', 'bad']
            })
            metadata = {
                'feature_start_time': datetime.date(2012, 12, 20),
                'end_time': datetime.date(2016, 12, 20),
                'label_name': 'label',
                'label_timespan': '1y',
                'metta-uuid': '1234',
                'feature_names': ['ft1', 'ft2'],
                'indices': ['entity_id'],
            }
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(s3_conn, project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan']
            )
            matrix_store = InMemoryMatrixStore(matrix, metadata)
            model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )

            # assert
            # 1. that the models and feature importances table entries are present
            records = [
                row for row in
                engine.execute('select * from results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            records = [
                row for row in
                engine.execute('select model_hash from results.models')
            ]
            assert len(records) == 4

            cache_keys = [
                model_cache_key(project_path, model_row[0], s3_conn)
                for model_row in records
            ]

            # 2. that the model groups are distinct
            records = [
                row for row in
                engine.execute('select distinct model_group_id from results.models')
            ]
            assert len(records) == 4

            # 3. that all four models are cached
            model_pickles = [
                pickle.loads(cache_key.get()['Body'].read())
                for cache_key in cache_keys
            ]
            assert len(model_pickles) == 4
            assert len([x for x in model_pickles if x is not None]) == 4

            # 4. that their results can have predictions made on it
            test_matrix = pandas.DataFrame.from_dict({
                'entity_id': [3, 4],
                'feature_one': [4, 4],
                'feature_two': [6, 5],
            })

            test_matrix = InMemoryMatrixStore(matrix=test_matrix, metadata=metadata).matrix

            for model_pickle in model_pickles:
                predictions = model_pickle.predict(test_matrix)
                assert len(predictions) == 2

            # 5. when run again, same models are returned
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert len([
                row for row in
                engine.execute('select model_hash from results.models')
            ]) == 4
            assert model_ids == new_model_ids

            # 6. if replace is set, update non-unique attributes and feature importances
            max_batch_run_time = [
                row[0] for row in
                engine.execute('select max(batch_run_time) from results.models')
            ][0]
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                db_engine=engine,
                model_group_keys=['label_name', 'label_timespan'],
                replace=True
            )
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store,
            )
            assert model_ids == new_model_ids
            assert [
                row['model_id'] for row in
                engine.execute('select model_id from results.models order by 1 asc')
            ] == model_ids
            new_max_batch_run_time = [
                row[0] for row in
                engine.execute('select max(batch_run_time) from results.models')
            ][0]
            assert new_max_batch_run_time > max_batch_run_time

            records = [
                row for row in
                engine.execute('select * from results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            # 7. if the cache is missing but the metadata is still there, reuse the metadata
            for row in engine.execute('select model_hash from results.models'):
                model_storage_engine.get_store(row[0]).delete()
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert model_ids == sorted(new_model_ids)

            # 8. that the generator interface works the same way
            new_model_ids = trainer.generate_trained_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=matrix_store
            )
            assert model_ids == \
                sorted([model_id for model_id in new_model_ids])