Beispiel #1
0
    def setup(self):
        self.mesh = UnitCubeMesh(5, 5, 5)

        # Create time
        self.time = Constant(0.0)

        # Create stimulus
        self.stimulus = Expression("2.0*t", t=self.time, degree=1)

        # Create ac
        self.applied_current = Expression("sin(2*pi*x[0])*t",
                                          t=self.time,
                                          degree=3)

        # Create conductivity "tensors"
        self.M_i = 1.0
        self.M_e = 2.0

        self.cell_model = FitzHughNagumoManual()
        self.cardiac_model = CardiacModel(self.mesh, self.time, self.M_i,
                                          self.M_e, self.cell_model,
                                          self.stimulus, self.applied_current)

        dt = 0.1
        self.t0 = 0.0
        self.dt = [(0.0, dt), (dt * 2, dt / 2), (dt * 4, dt)]
        # Test using variable dt interval but using the same dt.

        self.T = self.t0 + 5 * dt
        self.ics = self.cell_model.initial_conditions()
Beispiel #2
0
        def __init__(self):
            self.mesh = UnitCubeMesh(5, 5, 5)

            # Create time
            self.time = Constant(0.0)

            # Create stimulus
            self.stimulus = Expression("2.0*t", t=self.time, degree=1)

            # Create ac
            self.applied_current = Expression("sin(2*pi*x[0])*t",
                                              t=self.time,
                                              degree=3)

            # Create conductivity "tensors"
            self.M_i = 1.0
            self.M_e = 2.0

            self.cell_model = FitzHughNagumoManual()
            self.cardiac_model = CardiacModel(self.mesh, self.time, self.M_i,
                                              self.M_e, self.cell_model,
                                              self.stimulus,
                                              self.applied_current)

            dt = 0.1
            self.t0 = 0.0
            if Solver == SplittingSolver:
                # FIXME: Dolfin-adjoint fails with adaptive timestep and SplittingSolver
                self.dt = dt
            else:
                self.dt = [(0.0, dt), (dt * 2, dt / 2), (dt * 4, dt)]
            # Test using variable dt interval but using the same dt.

            self.T = self.t0 + 5 * dt

            # Create solver object
            params = Solver.default_parameters()

            if Solver == SplittingSolver:
                params.enable_adjoint = enable_adjoint
                params.BidomainSolver.linear_solver_type = solver_type
                params.BidomainSolver.petsc_krylov_solver.relative_tolerance = 1e-12
            else:
                params.BasicBidomainSolver.linear_variational_solver.linear_solver = \
                                "gmres" if solver_type == "iterative" else "lu"
                params.BasicBidomainSolver.linear_variational_solver.krylov_solver.relative_tolerance = 1e-12
                params.BasicBidomainSolver.linear_variational_solver.preconditioner = 'ilu'

            self.solver = Solver(self.cardiac_model, params=params)
            (vs_, vs, vur) = self.solver.solution_fields()

            if ics is None:
                self.ics = self.cell_model.initial_conditions()
                vs_.assign(self.ics)
            else:
                vs_.vector()[:] = ics.vector()
    def setup(self):
        self.mesh = UnitCubeMesh(5, 5, 5)
        self.time = Constant(0.0)

        # Create stimulus
        self.stimulus = Expression("2.0", degree=1)

        # Create applied current
        self.applied_current = Expression("sin(2*pi*x[0])*t", t=self.time,
                                          degree=3)

        # Create conductivity "tensors"
        self.M_i = 1.0
        self.M_e = 2.0

        self.t0 = 0.0
        self.dt = 0.1
        self.T = 5*self.dt
def test_solver_with_domains():

    mesh = UnitCubeMesh(5, 5, 5)
    time = Constant(0.0)

    stimulus = Expression("2.0*t", t=time, degree=1)

    # Create ac
    applied_current = Expression("sin(2*pi*x[0])*t", t=time, degree=3)

    # Create conductivity "tensors"
    M_i = 1.0
    M_e = 2.0

    cell_model = FitzHughNagumoManual()
    cardiac_model = CardiacModel(mesh, time, M_i, M_e, cell_model,
                                 stimulus, applied_current)

    dt = 0.1
    t0 = 0.0
    dt = dt
    T = t0 + 5*dt

    ics = cell_model.initial_conditions()

    # Create basic solver
    params = SplittingSolver.default_parameters()
    params["ode_solver_choice"] = "BasicCardiacODESolver"
    solver = SplittingSolver(cardiac_model, params=params)

    (vs_, vs, vur) = solver.solution_fields()
    vs_.assign(ics)

    # Solve
    solutions = solver.solve((t0, T), dt)
    for (interval, fields) in solutions:
        (vs_, vs, vur) = fields
 def setup(self):
     self.mesh = UnitCubeMesh(2, 2, 2)
     self.cell_model = FitzHughNagumoManual()
     self.cardiac_model = CardiacModel(self.mesh, None,
                                       1.0, 2.0,
                                       self.cell_model)