def __init__(self,
              inplanes,
              planes,
              lstm_size,
              emb_size,
              stride=1,
              downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     # self.bn1 = nn.BatchNorm2d(planes)
     self.bn1 = CBN(lstm_size, emb_size, planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     # self.bn2 = nn.BatchNorm2d(planes)
     self.bn2 = CBN(lstm_size, emb_size, planes)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     # self.bn3 = nn.BatchNorm2d(planes * 4)
     self.bn3 = CBN(lstm_size, emb_size, planes * 4)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
    def __init__(self, block, layers, lstm_size, emb_size, num_classes=1000):
        self.inplanes = 64
        self.lstm_size = lstm_size
        self.emb_size = emb_size
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False).cuda()
        # self.bn1 = nn.BatchNorm2d(64)
        self.bn1 = CBN(self.lstm_size, self.emb_size, 64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Beispiel #3
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            if use_cbn:
                downsample = Sequential(
                    Conv2d(self.inplanes,
                           planes * block.expansion,
                           kernel_size=1,
                           stride=stride,
                           bias=False),
                    CBN(self.lstm_size, self.emb_size,
                        planes * block.expansion),
                )
            else:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes,
                              planes * block.expansion,
                              kernel_size=1,
                              stride=stride,
                              bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )

        layers = []
        layers.append(
            block(self.inplanes, planes, self.lstm_size, self.emb_size, stride,
                  downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes, planes, self.lstm_size, self.emb_size))

        return Sequential(*layers)
 def __init__(self,
              inplanes,
              planes,
              lstm_size,
              emb_size,
              stride=1,
              downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     # self.bn1 = nn.BatchNorm2d(planes)
     self.bn1 = CBN(lstm_size, emb_size, planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     # self.bn2 = nn.BatchNorm2d(planes)
     self.bn2 = CBN(lstm_size, emb_size, planes)
     self.downsample = downsample
     self.stride = stride