Beispiel #1
0
 def d_target_d_site_cart(self):
   manager = self.manager
   xray.set_scatterer_grad_flags(
     scatterers=manager.xray_structure.scatterers(),
     site=True)
   return flex.vec3_double(
     self.gradients_wrt_atomic_parameters().packed())
 def __init__(self, fmodel, max_iterations=100, sites=False, u_iso=False):
     self.fmodel = fmodel
     self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
     self.x_target_functor = self.fmodel.target_functor()
     self.sites = sites
     self.u_iso = u_iso
     if (self.sites):
         self.x = self.fmodel.xray_structure.sites_cart().as_double()
     if (self.u_iso):
         assert self.fmodel.xray_structure.scatterers().size() == \
           self.fmodel.xray_structure.use_u_iso().count(True)
         self.x = self.fmodel.xray_structure.extract_u_iso_or_u_equiv()
     if (self.sites):
         xray.set_scatterer_grad_flags(
             scatterers=self.fmodel.xray_structure.scatterers(), site=True)
     if (self.u_iso):
         sel = flex.bool(self.fmodel.xray_structure.scatterers().size(),
                         True).iselection()
         self.fmodel.xray_structure.scatterers().flags_set_grad_u_iso(
             iselection=sel)
     self.minimizer = scitbx.lbfgs.run(
         target_evaluator=self,
         termination_params=scitbx.lbfgs.termination_parameters(
             max_iterations=max_iterations),
         exception_handling_params=scitbx.lbfgs.
         exception_handling_parameters(
             ignore_line_search_failed_rounding_errors=True,
             ignore_line_search_failed_step_at_lower_bound=True,
             ignore_line_search_failed_maxfev=True))
     self.fmodel.xray_structure.tidy_us()
     self.fmodel.xray_structure.apply_symmetry_sites()
     self.fmodel.update_xray_structure(
         xray_structure=self.fmodel.xray_structure, update_f_calc=True)
Beispiel #3
0
 def d_target_d_site_cart(self):
   manager = self.manager
   xray.set_scatterer_grad_flags(
     scatterers=manager.xray_structure.scatterers(),
     site=True)
   return flex.vec3_double(
     self.gradients_wrt_atomic_parameters().packed())
Beispiel #4
0
 def initialize(self, fmodel=None):
     self.not_hd_selection = ~self.fmodel.xray_structure.hd_selection(
     )  # XXX UGLY
     assert fmodel is not None
     self.fmodel = fmodel
     self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
     xray.set_scatterer_grad_flags(
         scatterers=self.fmodel.xray_structure.scatterers(), site=True)
     self.x = self.fmodel.xray_structure.sites_cart().as_double()
     self.x_target_functor = self.fmodel.target_functor()
Beispiel #5
0
 def __init__(self,
              fmodel,
              tlsos_initial,
              refine_T,
              refine_L,
              refine_S,
              selections,
              selections_1d,
              max_iterations,
              run_finite_differences_test=False,
              correct_adp=True):
     adopt_init_args(self, locals())
     fmodel.xray_structure.scatterers().flags_set_grads(state=False)
     xray.set_scatterer_grad_flags(
         scatterers=fmodel.xray_structure.scatterers(), u_aniso=True)
     if (self.run_finite_differences_test): self.correct_adp = False
     self.fmodel_copy = self.fmodel.deep_copy()
     self.target_functor = self.fmodel_copy.target_functor()
     self.run_finite_differences_test_counter = 0
     self.T_initial = []
     self.L_initial = []
     self.S_initial = []
     self.origins = []
     for tlso_ in tlsos_initial:
         self.T_initial.append(tlso_.t)
         self.L_initial.append(tlso_.l)
         self.S_initial.append(tlso_.s)
         self.origins.append(tlso_.origin)
     self.counter = 0
     self.n_groups = len(self.T_initial)
     self.dim_T = len(self.T_initial[0])
     self.dim_L = len(self.L_initial[0])
     self.dim_S = len(self.S_initial[0])
     self.T_min = self.T_initial
     self.L_min = self.L_initial
     self.S_min = self.S_initial
     self.x = self.pack(self.T_min, self.L_min, self.S_min)
     self.minimizer = lbfgs.run(
         target_evaluator=self,
         core_params=lbfgs.core_parameters(maxfev=10),
         termination_params=lbfgs.termination_parameters(
             min_iterations=max_iterations,
             max_calls=int(max_iterations * 1.5)),
         exception_handling_params=lbfgs.exception_handling_parameters(
             ignore_line_search_failed_step_at_lower_bound=True,
             ignore_line_search_failed_step_at_upper_bound=True,
             ignore_line_search_failed_maxfev=True))
     self.compute_functional_and_gradients()
     del self.x
     self.tlsos_result = generate_tlsos(
         selections=self.selections,
         xray_structure=self.fmodel.xray_structure,
         T=self.T_min,
         L=self.L_min,
         S=self.S_min)
Beispiel #6
0
 def __init__(self,
              fmodel,
              tlsos_initial,
              refine_T,
              refine_L,
              refine_S,
              selections,
              selections_1d,
              max_iterations,
              run_finite_differences_test = False,
              correct_adp = True):
   adopt_init_args(self, locals())
   fmodel.xray_structure.scatterers().flags_set_grads(state=False)
   xray.set_scatterer_grad_flags(scatterers = fmodel.xray_structure.scatterers(),
                                 u_aniso     = True)
   if(self.run_finite_differences_test): self.correct_adp = False
   self.fmodel_copy = self.fmodel.deep_copy()
   self.target_functor = self.fmodel_copy.target_functor()
   self.run_finite_differences_test_counter = 0
   self.T_initial = []
   self.L_initial = []
   self.S_initial = []
   self.origins   = []
   for tlso_ in tlsos_initial:
     self.T_initial.append(tlso_.t)
     self.L_initial.append(tlso_.l)
     self.S_initial.append(tlso_.s)
     self.origins.append(tlso_.origin)
   self.counter = 0
   self.n_groups = len(self.T_initial)
   self.dim_T = len(self.T_initial[0])
   self.dim_L = len(self.L_initial[0])
   self.dim_S = len(self.S_initial[0])
   self.T_min = self.T_initial
   self.L_min = self.L_initial
   self.S_min = self.S_initial
   self.x = self.pack(self.T_min, self.L_min, self.S_min)
   self.minimizer = lbfgs.run(
     target_evaluator = self,
     core_params = lbfgs.core_parameters(maxfev = 10),
     termination_params = lbfgs.termination_parameters(
       min_iterations = max_iterations,
       max_calls = int(max_iterations*1.5)),
       exception_handling_params = lbfgs.exception_handling_parameters(
         ignore_line_search_failed_step_at_lower_bound = True,
         ignore_line_search_failed_step_at_upper_bound = True,
         ignore_line_search_failed_maxfev              = True))
   self.compute_functional_and_gradients()
   del self.x
   self.tlsos_result = generate_tlsos(
     selections     = self.selections,
     xray_structure = self.fmodel.xray_structure,
     T              = self.T_min,
     L              = self.L_min,
     S              = self.S_min)
Beispiel #7
0
 def __init__(self,
              fmodel,
              model,
              xs_initial,
              adp_nmas,
              fsub_adp,
              selections,
              selections_1d,
              max_iterations,
              n_modes,
              weight_nmre=1.0,
              run_finite_differences_test=False,
              correct_adp=True,
              zero_mode_flag=True):
     adopt_init_args(self, locals())
     fmodel.xray_structure.scatterers().flags_set_grads(state=False)
     xray.set_scatterer_grad_flags(
         scatterers=fmodel.xray_structure.scatterers(), u_aniso=True)
     if (self.run_finite_differences_test): self.correct_adp = False
     self.fmodel_copy = self.fmodel.deep_copy()
     self.target_functor = self.fmodel_copy.target_functor()
     self.run_finite_differences_test_counter = 0
     self.counter = 0
     self.n_groups = len(self.xs_initial)
     self.dim_x = len(self.xs_initial[0])
     self.xs_min = self.xs_initial
     self.x = self.pack(self.xs_min)
     #        for adp_nma_selected, selection in zip(adp_nmas, selections):
     #            weights_selected = self.fmodel.xray_structure.atomic_weights.select(selection)
     #            modes1d_selected = selected_modes_to_1D(modes = self.modes, n_modes = self.n_modes,
     #                                                selection = self.selection)
     #            assert len(modes1d_selected)/n_modes == len(weights_selected)
     #            adp_nma_selected = init_nm_adp(modes = modes1d_selected,
     #                              weights = weights_selected,
     #                              n_modes = n_modes,
     #                              zero_mode_flag = zero_mode_flag)
     #            self.adp_nmas.append(adp_nma_selected)
     self.minimizer = lbfgs.run(
         target_evaluator=self,
         core_params=lbfgs.core_parameters(maxfev=10),
         termination_params=lbfgs.termination_parameters(
             min_iterations=max_iterations,
             max_calls=int(max_iterations * 1.5)),
         exception_handling_params=lbfgs.exception_handling_parameters(
             ignore_line_search_failed_step_at_lower_bound=True,
             ignore_line_search_failed_step_at_upper_bound=True,
             ignore_line_search_failed_maxfev=True))
     self.compute_functional_and_gradients()
     del self.x
     self.xs_result = self.xs_min
Beispiel #8
0
 def __init__(self,
       fmodel,
       states,
       restraints_manager,
       max_iterations=50,
       sites = False,
       u_iso = False,
       restraints_weight=1,
       data_weight=None,
       restraints_weight_scale=1):
   self.cntr = 0
   self.rws = restraints_weight_scale
   self.states = states
   self.fmodel = fmodel
   self.restraints_weight = restraints_weight
   self.data_weight = data_weight
   self.restraints_manager = restraints_manager
   self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
   self.x_target_functor = self.fmodel.target_functor()
   self.sites = sites
   self.u_iso = u_iso
   if(self.sites):
     self.x = self.fmodel.xray_structure.sites_cart().as_double()
   if(self.u_iso):
     assert self.fmodel.xray_structure.scatterers().size() == \
       self.fmodel.xray_structure.use_u_iso().count(True)
     self.x = self.fmodel.xray_structure.extract_u_iso_or_u_equiv()
   if(self.sites):
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       site       = True)
   if(self.u_iso):
     sel = flex.bool(
       self.fmodel.xray_structure.scatterers().size(), True).iselection()
     self.fmodel.xray_structure.scatterers().flags_set_grad_u_iso(
       iselection = sel)
   self.minimizer = scitbx.lbfgs.run(
     target_evaluator=self,
     termination_params=scitbx.lbfgs.termination_parameters(
       max_iterations=max_iterations),
     exception_handling_params=scitbx.lbfgs.exception_handling_parameters(
       ignore_line_search_failed_rounding_errors=True,
       ignore_line_search_failed_step_at_lower_bound=True,
       ignore_line_search_failed_maxfev=True))
   self.fmodel.xray_structure.tidy_us()
   self.fmodel.xray_structure.apply_symmetry_sites()
   self.fmodel.update_xray_structure(
     xray_structure = self.fmodel.xray_structure,
     update_f_calc  = True)
Beispiel #9
0
    def __init__(self,
                 fmodel,
                 model,
                 xs_initial,
                 adp_nmas,
                 selections,
                 selections_1d,
                 max_iterations,
                 n_modes,
                 weight_nmre = 1.0,
                 run_finite_differences_test = False,
                 correct_adp = True,
                 zero_mode_flag = True):
        adopt_init_args(self, locals())
        fmodel.xray_structure.scatterers().flags_set_grads(state=False)
        xray.set_scatterer_grad_flags(scatterers = fmodel.xray_structure.scatterers(),
                                      u_aniso = True)
        if(self.run_finite_differences_test): self.correct_adp = False
        self.fmodel_copy = self.fmodel.deep_copy()
        self.target_functor = self.fmodel_copy.target_functor()
        self.run_finite_differences_test_counter = 0
        self.counter = 0
        self.n_groups = len(self.xs_initial)
        self.dim_x    = len(self.xs_initial[0])
        self.xs_min    = self.xs_initial
        self.x = self.pack(self.xs_min)
#        for adp_nma_selected, selection in zip(adp_nmas, selections):
#            weights_selected = self.fmodel.xray_structure.atomic_weights.select(selection)
#            modes1d_selected = selected_modes_to_1D(modes = self.modes, n_modes = self.n_modes,
#                                                selection = self.selection)
#            assert len(modes1d_selected)/n_modes == len(weights_selected)
#            adp_nma_selected = init_nm_adp(modes = modes1d_selected,
#                              weights = weights_selected,
#                              n_modes = n_modes,
#                              zero_mode_flag = zero_mode_flag)
#            self.adp_nmas.append(adp_nma_selected)
        self.minimizer = lbfgs.run(
                target_evaluator = self,
                core_params = lbfgs.core_parameters(),
                termination_params = lbfgs.termination_parameters(
                    min_iterations = max_iterations,
                    max_calls = int(max_iterations*1.5)),
                exception_handling_params = lbfgs.exception_handling_parameters(
                    ignore_line_search_failed_step_at_lower_bound = False,
                    ignore_line_search_failed_step_at_upper_bound = True,
                    ignore_line_search_failed_maxfev              = False))
        self.compute_functional_and_gradients()
        del self.x
        self.xs_result = self.xs_min
Beispiel #10
0
def site(structure_ideal, d_min, f_obs, verbose=0):
    sh = shifted_site(f_obs, structure_ideal, 0, 0, 0.01)
    if (0 or verbose):
        print("site")
        sh.structure_shifted.show_summary().show_scatterers()
        print()
    ls = xray.targets_least_squares_residual(f_obs.data(), sh.f_calc.data(),
                                             True, 1)
    gradient_flags = randomize_gradient_flags(
        xray.structure_factors.gradient_flags(site=True),
        f_obs.anomalous_flag())
    xray.set_scatterer_grad_flags(scatterers=sh.structure_shifted.scatterers(),
                                  site=gradient_flags.site,
                                  u_iso=gradient_flags.u_iso,
                                  u_aniso=gradient_flags.u_aniso,
                                  occupancy=gradient_flags.occupancy,
                                  fp=gradient_flags.fp,
                                  fdp=gradient_flags.fdp)
    sfd = xray.structure_factors.gradients_direct(
        xray_structure=sh.structure_shifted,
        u_iso_refinable_params=None,
        miller_set=f_obs,
        d_target_d_f_calc=ls.derivatives(),
        n_parameters=0)
    re = resampling(miller_set=f_obs)
    map0 = re(xray_structure=sh.structure_shifted,
              u_iso_refinable_params=None,
              dp=miller.array(miller_set=f_obs, data=ls.derivatives()),
              n_parameters=0,
              verbose=verbose)
    sfd_d_target_d_site_cart = sfd.d_target_d_site_cart()
    top_gradient = None
    for i_scatterer, scatterer in enumerate(sh.structure_shifted.scatterers()):
        for i_xyz in (0, 1, 2):
            direct_summ = sfd_d_target_d_site_cart[i_scatterer][i_xyz]
            if (top_gradient is None): top_gradient = direct_summ
            fast_gradie = map0.d_target_d_site_cart()[i_scatterer][i_xyz]
            match = judge(scatterer, "site", direct_summ, fast_gradie,
                          top_gradient)
            if (0 or verbose):
                print("direct summ[%d][%d]: " % (i_scatterer, i_xyz),
                      direct_summ)
                print("fast gradie[%d][%d]: " % (i_scatterer, i_xyz),
                      fast_gradie, match)
                print()
            assert not match.is_bad
    sys.stdout.flush()
 def __init__(self,
              restraints_manager=None,
              fmodel=None,
              sites_cart=None,
              wx=None,
              wc=None,
              update_gradient_threshold=0):
     adopt_init_args(self, locals())
     assert [self.fmodel, self.wx].count(None) in [0, 2]
     assert [self.restraints_manager, self.wc].count(None) in [0, 2]
     self.gx, self.gc = 0, 0
     if (self.fmodel is not None):
         self.x_target_functor = self.fmodel.target_functor()
         xray.set_scatterer_grad_flags(
             scatterers=self.fmodel.xray_structure.scatterers(), site=True)
         self.gx = flex.vec3_double(self.x_target_functor(compute_gradients=True).\
           gradients_wrt_atomic_parameters(site=True).packed())
def site(structure_ideal, d_min, f_obs, verbose=0):
  sh = shifted_site(f_obs, structure_ideal, 0, 0, 0.01)
  if (0 or verbose):
    print "site"
    sh.structure_shifted.show_summary().show_scatterers()
    print
  ls = xray.targets_least_squares_residual(
    f_obs.data(), sh.f_calc.data(), True, 1)
  gradient_flags = randomize_gradient_flags(
    xray.structure_factors.gradient_flags(site=True),
    f_obs.anomalous_flag())
  xray.set_scatterer_grad_flags(scatterers = sh.structure_shifted.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  sfd = xray.structure_factors.gradients_direct(
    xray_structure=sh.structure_shifted,
    u_iso_refinable_params=None,
    miller_set=f_obs,
    d_target_d_f_calc=ls.derivatives(),
    n_parameters=0)
  re = resampling(miller_set=f_obs)
  map0 = re(
    xray_structure=sh.structure_shifted,
    u_iso_refinable_params=None,
    dp=miller.array(miller_set=f_obs, data=ls.derivatives()),
    n_parameters=0,
    verbose=verbose)
  sfd_d_target_d_site_cart = sfd.d_target_d_site_cart()
  top_gradient = None
  for i_scatterer,scatterer in enumerate(sh.structure_shifted.scatterers()):
    for i_xyz in (0,1,2):
      direct_summ = sfd_d_target_d_site_cart[i_scatterer][i_xyz]
      if (top_gradient is None): top_gradient = direct_summ
      fast_gradie = map0.d_target_d_site_cart()[i_scatterer][i_xyz]
      match = judge(scatterer, "site", direct_summ, fast_gradie, top_gradient)
      if (0 or verbose):
        print "direct summ[%d][%d]: " % (i_scatterer,i_xyz), direct_summ
        print "fast gradie[%d][%d]: " % (i_scatterer,i_xyz), fast_gradie, match
        print
      assert not match.is_bad
  sys.stdout.flush()
 def __init__(self,
              restraints_manager        = None,
              fmodel                    = None,
              sites_cart                = None,
              wx                        = None,
              wc                        = None,
              update_gradient_threshold = 0):
   adopt_init_args(self, locals())
   assert [self.fmodel,             self.wx].count(None) in [0,2]
   assert [self.restraints_manager, self.wc].count(None) in [0,2]
   self.gx, self.gc = 0, 0
   if(self.fmodel is not None):
     self.x_target_functor = self.fmodel.target_functor()
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       site       = True)
     self.gx = flex.vec3_double(self.x_target_functor(compute_gradients=True).\
       gradients_wrt_atomic_parameters(site=True).packed())
 def __init__(self,
       fmodel,
       max_iterations=100,
       sites = False,
       u_iso = False):
   self.fmodel = fmodel
   self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
   self.x_target_functor = self.fmodel.target_functor()
   self.sites = sites
   self.u_iso = u_iso
   if(self.sites):
     # Coordiantes
     self.x = self.fmodel.xray_structure.sites_cart().as_double()
   if(self.u_iso):
     # anisotropic displacement factors
     assert self.fmodel.xray_structure.scatterers().size() == \
       self.fmodel.xray_structure.use_u_iso().count(True)
     self.x = self.fmodel.xray_structure.extract_u_iso_or_u_equiv()
   if(self.sites):
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       site       = True)
   if(self.u_iso):
     sel = flex.bool(
       self.fmodel.xray_structure.scatterers().size(), True).iselection()
     self.fmodel.xray_structure.scatterers().flags_set_grad_u_iso(
       iselection = sel)
   self.minimizer = scitbx.lbfgs.run(
     target_evaluator=self,
     termination_params=scitbx.lbfgs.termination_parameters(
       max_iterations=max_iterations),
     exception_handling_params=scitbx.lbfgs.exception_handling_parameters(
       ignore_line_search_failed_rounding_errors=True,
       ignore_line_search_failed_step_at_lower_bound=True,
       ignore_line_search_failed_maxfev=True))
   self.fmodel.xray_structure.tidy_us()
   self.fmodel.xray_structure.apply_symmetry_sites()
   self.fmodel.update_xray_structure(
     xray_structure = self.fmodel.xray_structure,
     update_f_calc  = True)
Beispiel #15
0
 def __init__(self,
              fmodel,
              ncs_restraints_group_list,
              refine_selection=None,
              use_ncs_constraints=True,
              restraints_manager=None,
              data_weight=None,
              refine_sites=False,
              refine_u_iso=False,
              refine_transformations=False,
              iso_restraints=None,
              use_hd=False):
     adopt_init_args(self, locals())
     asu_size = self.fmodel.xray_structure.sites_cart().size()
     self.refine_selection = nu.get_refine_selection(
         refine_selection=self.refine_selection, number_of_atoms=asu_size)
     self.extended_ncs_selection = nu.get_extended_ncs_selection(
         ncs_restraints_group_list=ncs_restraints_group_list,
         refine_selection=self.refine_selection)
     self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
     self.x_target_functor = self.fmodel.target_functor()
     self.xray_structure = self.fmodel.xray_structure
     if self.refine_sites:
         xray.set_scatterer_grad_flags(
             scatterers=self.fmodel.xray_structure.scatterers(), site=True)
     elif self.refine_u_iso:
         xray.set_scatterer_grad_flags(
             scatterers=self.fmodel.xray_structure.scatterers(), u_iso=True)
     elif self.refine_transformations:
         xray.set_scatterer_grad_flags(
             scatterers=self.fmodel.xray_structure.scatterers(), site=True)
Beispiel #16
0
def finite_differences_test():
    print "finite_differences_test: "
    fmodel = get_fmodel_from_pdb(pdb_file_name="enk_rbr.pdb",
                                 algorithm="direct",
                                 d_min=2.0,
                                 target="ls_wunit_k1")
    xray.set_scatterer_grad_flags(
        scatterers=fmodel.xray_structure.scatterers(), site=True)
    for convention in ["zyz", "xyz"]:
        rot_obj = scitbx.rigid_body.euler(phi=0,
                                          psi=0,
                                          the=0,
                                          convention=convention)
        size = fmodel.xray_structure.scatterers().size()
        selections = [flex.bool(size, True).iselection()]
        fmodel.xray_structure.apply_rigid_body_shift(rot=rot_obj.rot_mat(),
                                                     trans=[1, 2, 3])
        fmodel.update_xray_structure(update_f_calc=True)
        fmodel_copy = fmodel.deep_copy()
        centers_of_mass = []
        for s in selections:
            xrs = fmodel_copy.xray_structure.select(s)
            centers_of_mass.append(xrs.center_of_mass())
        tg_obj = mmtbx.refinement.rigid_body.target_and_grads(
            centers_of_mass=centers_of_mass,
            sites_cart=fmodel_copy.xray_structure.sites_cart(),
            target_functor=fmodel_copy.target_functor(),
            rot_objs=[rot_obj],
            selections=selections,
            suppress_gradients=False)
        assert approx_equal(tg_obj.target(), fmodel_copy.target_w())
        g_rot, g_transl = tg_obj.gradients_wrt_r(), tg_obj.gradients_wrt_t()
        fd_transl = fd_translation(fmodel_copy, e=0.0001)
        assert approx_equal(list(g_transl[0]), fd_transl)
        fd_rot = fd_rotation(fmodel=fmodel_copy,
                             e=0.0001,
                             convention=convention)
        assert approx_equal(list(g_rot[0]), fd_rot)
def finite_differences_test():
  print "finite_differences_test: "
  fmodel = get_fmodel_from_pdb(pdb_file_name = "enk_rbr.pdb",
                               algorithm = "direct",
                               d_min = 2.0,
                               target = "ls_wunit_k1")
  xray.set_scatterer_grad_flags(
    scatterers = fmodel.xray_structure.scatterers(),
    site       = True)
  for convention in ["zyz","xyz"]:
      rot_obj = scitbx.rigid_body.euler(
        phi = 0, psi = 0, the = 0, convention = convention)
      size = fmodel.xray_structure.scatterers().size()
      selections = [flex.bool(size, True).iselection()]
      fmodel.xray_structure.apply_rigid_body_shift(
        rot = rot_obj.rot_mat(), trans = [1,2,3])
      fmodel.update_xray_structure(update_f_calc = True)
      fmodel_copy = fmodel.deep_copy()
      centers_of_mass = []
      for s in selections:
        xrs = fmodel_copy.xray_structure.select(s)
        centers_of_mass.append(xrs.center_of_mass())
      tg_obj = mmtbx.refinement.rigid_body.target_and_grads(
        centers_of_mass = centers_of_mass,
        sites_cart      = fmodel_copy.xray_structure.sites_cart(),
        target_functor  = fmodel_copy.target_functor(),
        rot_objs        = [rot_obj],
        selections      = selections,
        suppress_gradients = False)
      assert approx_equal(tg_obj.target(),fmodel_copy.target_w())
      g_rot, g_transl = tg_obj.gradients_wrt_r(), tg_obj.gradients_wrt_t()
      fd_transl = fd_translation(fmodel_copy, e = 0.0001)
      assert approx_equal(list(g_transl[0]), fd_transl)
      fd_rot = fd_rotation(fmodel     = fmodel_copy,
                           e          = 0.0001,
                           convention = convention)
      assert approx_equal(list(g_rot[0]), fd_rot)
 def __init__(
       self,
       fmodel,
       ncs_restraints_group_list,
       refine_selection=None,
       use_ncs_constraints=True,
       restraints_manager=None,
       data_weight=None,
       refine_sites=False,
       refine_u_iso=False,
       refine_transformations=False,
       iso_restraints = None,
       use_hd         = False):
   adopt_init_args(self, locals())
   asu_size = self.fmodel.xray_structure.sites_cart().size()
   self.refine_selection = nu.get_refine_selection(
     refine_selection=self.refine_selection,
     number_of_atoms=asu_size)
   self.extended_ncs_selection = nu.get_extended_ncs_selection(
     ncs_restraints_group_list=ncs_restraints_group_list,
     refine_selection=self.refine_selection)
   self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
   self.x_target_functor = self.fmodel.target_functor()
   self.xray_structure = self.fmodel.xray_structure
   if self.refine_sites:
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       site       = True)
   elif self.refine_u_iso:
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       u_iso      = True)
   elif self.refine_transformations:
     xray.set_scatterer_grad_flags(
       scatterers = self.fmodel.xray_structure.scatterers(),
       site       = True)
def get_intensity_structure(base,FE1_model,FE2_model):
  """Now used stuff learned from test_fmodel_stuff to calculate new data structure for use
     in the program.
  """
  # generate the list of all HKL to be used throughout.
  C2_structures = get_C2_structures()

  energy = 7070.0
  GF_whole7070 = gen_fmodel_with_complex.from_structure(C2_structures[0],energy
                 ).from_parameters(algorithm="fft")
  GF_whole7070 = GF_whole7070.as_P1_primitive()
  f_container7070 = GF_whole7070.get_fmodel()
  Fmodel_whole7070 = f_container7070.f_model
  Fmodel_indices = Fmodel_whole7070.indices() # common structure defines the indices
  MS = Fmodel_whole7070.set() # avoid having to repeatedly calculate indices
  CS = Fmodel_whole7070.crystal_symmetry() # same here

  result = flex.double(flex.grid((Fmodel_indices.size(),500)))

  GF_FE1 = gen_fmodel_with_complex.from_structure(C2_structures[2],energy
           ).from_parameters(algorithm="direct")
  GF_FE1 = GF_FE1.as_P1_primitive()
  GF_FE2 = gen_fmodel_with_complex.from_structure(C2_structures[3],energy
           ).from_parameters(algorithm="direct")
  GF_FE2 = GF_FE2.as_P1_primitive()

  for incr in range(100):
    print ("incr is",incr)
    energy = 7070.5 + incr

    GF_FE1.reset_specific_at_energy(label_has="FE1",tables=FE1_model,newvalue=energy)
    # not sure if I need this, takes a lot of time # f_container = GF_FE1.get_fmodel()
    # not sure if I need this, takes a lot of time # Fcalc_FE1 = f_container.fmodel.f_calc()

    GF_FE2.reset_specific_at_energy(label_has="FE2",tables=FE2_model,newvalue=energy)
    # not sure if I need this, takes a lot of time # f_container = GF_FE2.get_fmodel()
    # not sure if I need this, takes a lot of time # Fcalc_FE2 = f_container.fmodel.f_calc()

    ALGO = structure_factors.from_scatterers(crystal_symmetry=CS,
                                             d_min=GF_whole7070.params2.high_resolution)
    #hack cctbx/xray/structure_factors/structure_factors_direct.h
    """
/*#if !defined(CCTBX_XRAY_STRUCTURE_FACTORS_DIRECT_NO_PRAGMA_OMP)
#if !defined(__DECCXX_VER) || (defined(_OPENMP) && _OPENMP > 199819)
        #pragma omp parallel for schedule(static)
#endif
#endif
*/
        #pragma omp parallel for
    """
    from_scatterers_direct_fe1 = ALGO(xray_structure=GF_FE1.xray_structure,
                                      miller_set=MS,algorithm="direct")
    Fcalc_FE1_dir = from_scatterers_direct_fe1.f_calc().data()
    from_scatterers_direct_fe2 = ALGO(xray_structure=GF_FE2.xray_structure,
                                      miller_set=MS,algorithm="direct")
    Fcalc_FE2_dir = from_scatterers_direct_fe2.f_calc().data()

    # Get total Fcalc at energy:
    F_bulk_non_Fe = base.matrix_copy_block(i_row=0,i_column=incr,
                    n_rows=Fmodel_indices.size(),n_columns=1)
    Fcalc_FE1_dir.reshape(flex.grid((Fmodel_indices.size(),1)))
    Fcalc_FE2_dir.reshape(flex.grid((Fmodel_indices.size(),1)))
    Fcalc_total = F_bulk_non_Fe + Fcalc_FE1_dir + Fcalc_FE2_dir

    result.matrix_paste_block_in_place(flex.norm(Fcalc_total),0,incr) # gives I = F * F

    gradient_flags=xray.structure_factors.gradient_flags(
      site=False,
      u_iso=False,
      u_aniso=False,
      occupancy=False,
      fp=True,
      fdp=True)
    xray.set_scatterer_grad_flags(scatterers = GF_FE1.xray_structure.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
    xray.set_scatterer_grad_flags(scatterers = GF_FE2.xray_structure.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)

    #hack cctbx/xray/structure_factors/each_hkl_gradients_direct.h
    #pragma omp parallel for (line 226)
    sf1 = xray.ext.each_hkl_gradients_direct(
    MS.unit_cell(), MS.space_group(), MS.indices(), GF_FE1.xray_structure.scatterers(), None,
    GF_FE1.xray_structure.scattering_type_registry(), GF_FE1.xray_structure.site_symmetry_table(),
    0)
    sf2 = xray.ext.each_hkl_gradients_direct(
    MS.unit_cell(), MS.space_group(), MS.indices(), GF_FE2.xray_structure.scatterers(), None,
    GF_FE2.xray_structure.scattering_type_registry(), GF_FE2.xray_structure.site_symmetry_table(),
    0)

    sf1.d_fcalc_d_fp().reshape(flex.grid((Fmodel_indices.size(),1)))
    sf1.d_fcalc_d_fdp().reshape(flex.grid((Fmodel_indices.size(),1)))
    sf2.d_fcalc_d_fp().reshape(flex.grid((Fmodel_indices.size(),1)))
    sf2.d_fcalc_d_fdp().reshape(flex.grid((Fmodel_indices.size(),1)))
    parts = Fcalc_total.parts()
    A = parts[0]
    B = parts[1]
    for offset,vec2 in zip([100,200,300,400],
      [sf1.d_fcalc_d_fp(),sf1.d_fcalc_d_fdp(),sf2.d_fcalc_d_fp(),sf2.d_fcalc_d_fdp()]):
      vparts = vec2.parts()
      vA = vparts[0]
      vB = vparts[1]
      partial_I_partial_q = 2. * (A * vA + B * vB)
      result.matrix_paste_block_in_place(partial_I_partial_q,0,incr + offset)

  # result holds a table of structure factor intensities.  Rows are Miller indices H.
  # First 100 columns are I_H(energy, 100 channels). The next four groups of 100 columns
  # are the partial derivatives of I_H with respect to fp(FE1), fdp(FE1), fp(FE2), and fdp(FE2)
  # respectively all as a function of energy channel. Thus this is
  # the energy-dependent portion of the calculation that is dependent on the iron model.
  return result
Beispiel #20
0
def exercise(space_group_info,
             n_elements       = 10,
             table            = "wk1995",
             d_min            = 2.0,
             k_sol            = 0.35,
             b_sol            = 45.0,
             b_cart           = None,
             quick=False,
             verbose=0):
  xray_structure = random_structure.xray_structure(
    space_group_info       = space_group_info,
    elements               =(("O","N","C")*(n_elements//3+1))[:n_elements],
    volume_per_atom        = 100,
    min_distance           = 1.5,
    general_positions_only = True,
    random_u_iso           = False,
    random_occupancy       = False)
  xray_structure.scattering_type_registry(table = table)
  sg = xray_structure.space_group()
  uc = xray_structure.unit_cell()
  u_cart_1 = adptbx.random_u_cart(u_scale=5, u_min=5)
  u_star_1 = adptbx.u_cart_as_u_star(uc, u_cart_1)
  b_cart   = adptbx.u_star_as_u_cart(uc, sg.average_u_star(u_star = u_star_1))
  for anomalous_flag in [False, True]:
      scatterers = xray_structure.scatterers()
      if (anomalous_flag):
        assert scatterers.size() >= 7
        for i in [1,7]:
          scatterers[i].fp = -0.2
          scatterers[i].fdp = 5
        have_non_zero_fdp = True
      else:
        for i in [1,7]:
          scatterers[i].fp = 0
          scatterers[i].fdp = 0
        have_non_zero_fdp = False
      f_obs = abs(xray_structure.structure_factors(
                               d_min          = d_min,
                               anomalous_flag = anomalous_flag,
                               cos_sin_table  = sfg_params.cos_sin_table,
                               algorithm      = sfg_params.algorithm).f_calc())
      f_obs_comp = f_obs.structure_factors_from_scatterers(
                            xray_structure = xray_structure,
                            algorithm      = sfg_params.algorithm,
                            cos_sin_table  = sfg_params.cos_sin_table).f_calc()
      f_obs = abs(f_obs_comp)
      flags = f_obs.generate_r_free_flags(fraction = 0.1,
                                          max_free = 99999999)
      #flags = flags.array(data = flex.bool(f_obs.data().size(), False))
      xrs = xray_structure.deep_copy_scatterers()
      xrs.shake_sites_in_place(rms_difference=0.3)
      for target in mmtbx.refinement.targets.target_names:
        if (quick):
          if (target not in ["ls_wunit_k1", "ml", "mlhl", "ml_sad"]):
            continue
        if (target == "mlhl"):
          if (have_non_zero_fdp): continue # XXX gradients not correct!
          experimental_phases = generate_random_hl(miller_set=f_obs)
        else:
          experimental_phases = None
        if (target == "ml_sad"
              and (not anomalous_flag or mmtbx.refinement.targets.phaser is None)):
          continue
        print "  ",target
        xray.set_scatterer_grad_flags(
          scatterers = xrs.scatterers(),
          site       = True)
        ss = 1./flex.pow2(f_obs.d_spacings().data()) / 4.
        u_star = adptbx.u_cart_as_u_star(
          f_obs.unit_cell(), adptbx.b_as_u(b_cart))
        k_anisotropic = mmtbx.f_model.ext.k_anisotropic(
          f_obs.indices(), u_star)
        k_mask = mmtbx.f_model.ext.k_mask(ss, k_sol, b_sol)
        fmodel = mmtbx.f_model.manager(
          xray_structure               = xrs,
          f_obs                        = f_obs,
          r_free_flags                 = flags,
          target_name                  = target,
          abcd                         = experimental_phases,
          sf_and_grads_accuracy_params = sfg_params,
          k_mask                       = k_mask,
          k_anisotropic                = k_anisotropic,
          mask_params                  = masks.mask_master_params.extract())
        fmodel.update_xray_structure(
          xray_structure=xrs,
          update_f_calc=True,
          update_f_mask=True)
        xray.set_scatterer_grad_flags(
          scatterers=fmodel.xray_structure.scatterers(),
          site=True)
        fmodel.update_xray_structure(update_f_calc=True)
        t_f = fmodel.target_functor()
        t_f.prepare_for_minimization()
        gs = t_f(compute_gradients=True).d_target_d_site_cart().as_double()
        gfd = finite_differences_site(target_functor=t_f)
        cc = flex.linear_correlation(gs, gfd).coefficient()
        if (0 or verbose):
          print "ana:", list(gs)
          print "fin:", list(gfd)
          print "rat:", [f/a for a,f in zip(gs,gfd)]
          print target, "corr:", cc, space_group_info
          print
        diff = gs - gfd
        diff /= max(1, flex.max(flex.abs(gfd)))
        tolerance = 1.2e-5
        assert approx_equal(abs(flex.min(diff) ), 0.0, tolerance)
        assert approx_equal(abs(flex.mean(diff)), 0.0, tolerance)
        assert approx_equal(abs(flex.max(diff) ), 0.0, tolerance)
        assert approx_equal(cc, 1.0, tolerance)
        fmodel.model_error_ml()
def exercise_gradient_manager(structure_ideal, f_obs,
                              anomalous_flag,
                              verbose=0):
  sh, ls = shift_all(structure_ideal, f_obs, anomalous_flag)
  grad_manager = xray.structure_factors.gradients(
    miller_set=f_obs,
    quality_factor=100000,
    wing_cutoff=1.e-10)
  gradient_flags=xray.structure_factors.gradient_flags(default=True)
  xray.set_scatterer_grad_flags(scatterers = sh.structure_shifted.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  if (0):
    print "exercise_gradient_manager"
    print "gradient_flags.site      ", gradient_flags.site
    print "gradient_flags.u_iso     ", gradient_flags.u_iso
    print "gradient_flags.u_aniso   ", gradient_flags.u_aniso
    print "gradient_flags.occupancy ", gradient_flags.occupancy
    print "gradient_flags.fp        ", gradient_flags.fp
    print "gradient_flags.fdp       ", gradient_flags.fdp
    cntr_use_u_iso = 0
    cntr_use_u_aniso = 0
    cntr_grad_u_iso = 0
    cntr_grad_u_aniso = 0
    for scatterer in sh.structure_shifted.scatterers():
      if (scatterer.flags.use_u_iso()):  cntr_use_u_iso += 1
      if (scatterer.flags.use_u_aniso()):  cntr_use_u_aniso += 1
      if (scatterer.flags.grad_u_iso()):  cntr_grad_u_iso += 1
      if (scatterer.flags.grad_u_aniso()):  cntr_grad_u_aniso += 1
    print "use_u_iso                ", cntr_use_u_iso,cntr_grad_u_iso
    print "use_u_aniso              ", cntr_use_u_aniso,cntr_grad_u_aniso
  if (random.random() > 0.5):
    n_parameters = 0
  else:
    n_parameters = xray.scatterer_grad_flags_counts(
                              sh.structure_shifted.scatterers()).n_parameters()
    assert n_parameters == sh.structure_shifted.n_parameters()
  gd = grad_manager(
    xray_structure=sh.structure_shifted,
    u_iso_refinable_params=None,
    miller_set=f_obs,
    d_target_d_f_calc=ls.derivatives(),
    n_parameters=n_parameters,
    algorithm="direct")
  gf = grad_manager(
    xray_structure=sh.structure_shifted,
    u_iso_refinable_params=None,
    miller_set=f_obs,
    d_target_d_f_calc=ls.derivatives(),
    n_parameters=n_parameters,
    algorithm="fft")
  grad_flags_counts = \
            xray.scatterer_grad_flags_counts(sh.structure_shifted.scatterers())
  if (n_parameters == 0):
    d = gd.d_target_d_site_frac()
    f = gf.d_target_d_site_frac()
    linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    d = gd.d_target_d_site_cart()
    f = gf.d_target_d_site_cart()
    linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    if(grad_flags_counts.u_iso > 0):
       d = gd.d_target_d_u_iso()
       f = gf.d_target_d_u_iso()
       linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    if(grad_flags_counts.u_aniso > 0):
       linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
       d = gd.d_target_d_u_cart()
       f = gf.d_target_d_u_cart()
       linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    d = gd.d_target_d_occupancy()
    f = gf.d_target_d_occupancy()
    linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    d = gd.d_target_d_fp()
    f = gf.d_target_d_fp()
    linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
    if (anomalous_flag):
      d = gd.d_target_d_fdp()
      f = gf.d_target_d_fdp()
      linear_regression_test(d, f, slope_tolerance=1.e-2, verbose=verbose)
  else:
    correlation = flex.linear_correlation(gd.packed(), gf.packed())
    assert correlation.is_well_defined()
    assert correlation.coefficient() > 0.995, correlation.coefficient()
def u_star(structure_ideal, d_min, f_obs, verbose=0):
  sh = shifted_u_star(f_obs, structure_ideal, 0, 0, 0.0001)
  if (0 or verbose):
    print "u_star"
    sh.structure_shifted.show_summary().show_scatterers()
    print
  ls = xray.targets_least_squares_residual(
    f_obs.data(), sh.f_calc.data(), True, 1)
  gradient_flags = randomize_gradient_flags(
    xray.structure_factors.gradient_flags(u_aniso=True),
    f_obs.anomalous_flag())
  xray.set_scatterer_grad_flags(scatterers = sh.structure_shifted.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  grad_flags_counts = xray.scatterer_grad_flags_counts(sh.structure_shifted.scatterers())
  if(grad_flags_counts.n_parameters() > 0):
     if (0):
       print "u_aniso"
       print "gradient_flags.site      ", gradient_flags.site
       print "gradient_flags.u_iso     ", gradient_flags.u_iso
       print "gradient_flags.u_aniso   ", gradient_flags.u_aniso
       print "gradient_flags.occupancy ", gradient_flags.occupancy
       print "gradient_flags.fp        ", gradient_flags.fp
       print "gradient_flags.fdp       ", gradient_flags.fdp
       cntr_use_u_iso = 0
       cntr_use_u_aniso = 0
       cntr_grad_u_iso = 0
       cntr_grad_u_aniso = 0
       for scatterer in sh.structure_shifted.scatterers():
         if (scatterer.flags.use_u_iso()):  cntr_use_u_iso += 1
         if (scatterer.flags.use_u_aniso()):  cntr_use_u_aniso += 1
         if (scatterer.flags.grad_u_iso()):  cntr_grad_u_iso += 1
         if (scatterer.flags.grad_u_aniso()):  cntr_grad_u_aniso += 1
       print "use_u_iso                ", cntr_use_u_iso,cntr_grad_u_iso
       print "use_u_aniso              ", cntr_use_u_aniso,cntr_grad_u_aniso
     sfd = xray.structure_factors.gradients_direct(
       xray_structure=sh.structure_shifted,
       u_iso_refinable_params=None,
       miller_set=f_obs,
       d_target_d_f_calc=ls.derivatives(),
       n_parameters= 0
       )
     re = resampling(miller_set=f_obs)
     map0 = re(
       xray_structure=sh.structure_shifted,
       u_iso_refinable_params=None,
       dp=miller.array(miller_set=f_obs, data=ls.derivatives()),
       n_parameters= 0,
       verbose=verbose)

     grad_flags_counts = xray.scatterer_grad_flags_counts(sh.structure_shifted.scatterers())
     if(grad_flags_counts.u_aniso):
        sfd_d_target_d_u_cart = sfd.d_target_d_u_cart()
        map0_d_target_d_u_cart = map0.d_target_d_u_cart()
     top_gradient = None
     gradients_1 = []
     for i_scatterer,scatterer in enumerate(sh.structure_shifted.scatterers()):
       if(scatterer.flags.use_u_iso()):   parameter_name = "u_iso"
       if(scatterer.flags.use_u_aniso()): parameter_name = "u_star"
       if(parameter_name == "u_iso" and scatterer.flags.grad_u_iso()):
          direct_summ = sfd.d_target_d_u_iso()[i_scatterer]
          if (top_gradient is None): top_gradient = direct_summ
          fast_gradie = map0.d_target_d_u_iso()[i_scatterer]
          sys.stdout.flush()
          gradients_1.append([direct_summ, fast_gradie])
          match = judge(scatterer, parameter_name, direct_summ, fast_gradie,
                                                                  top_gradient)
          if (0 or verbose):
            print "direct summ[%d]: " % i_scatterer, direct_summ
            print "fast gradie[%d]: " % i_scatterer, fast_gradie, match
            print
          assert not match.is_bad
       if parameter_name == "u_star" and scatterer.flags.grad_u_aniso():
        sfd_star = sfd.d_target_d_u_star()[i_scatterer]
        sfd_cart = adptbx.grad_u_star_as_u_cart(
          structure_ideal.unit_cell(), sfd_star)
        assert approx_equal(
          sfd_star,
          adptbx.grad_u_cart_as_u_star(structure_ideal.unit_cell(), sfd_cart))
        for ij in xrange(6):
          direct_summ = sfd_d_target_d_u_cart[i_scatterer][ij]
          if (top_gradient is None): top_gradient = direct_summ
          fast_gradie = map0_d_target_d_u_cart[i_scatterer][ij]
          gradients_1.append([direct_summ, fast_gradie])
          match =judge(scatterer,"u_star",direct_summ,fast_gradie,top_gradient)
          if (0 or verbose or match.is_bad):
            print "direct summ[%d][%d]: " % (i_scatterer, ij), direct_summ
            print "fast gradie[%d][%d]: " % (i_scatterer, ij),fast_gradie,match
            print
          assert not match.is_bad
     # Making sure that gradients_1 = gradients_2
     for i_scatterer,scatterer in enumerate(sh.structure_shifted.scatterers()):
         if(not scatterer.flags.use_u_iso()):
            scatterer.u_iso = -12345.0
         if(not scatterer.flags.use_u_aniso()):
            scatterer.u_star =(-999.,-999.,-999.,-999.,-999.,-999.)
     sfd = xray.structure_factors.gradients_direct(
       xray_structure=sh.structure_shifted,
       u_iso_refinable_params=None,
       miller_set=f_obs,
       d_target_d_f_calc=ls.derivatives(),
       n_parameters= 0
       )
     re = resampling(miller_set=f_obs)
     map0 = re(
       xray_structure=sh.structure_shifted,
       u_iso_refinable_params=None,
       dp=miller.array(miller_set=f_obs, data=ls.derivatives()),
       n_parameters= 0,
       verbose=verbose)

     grad_flags_counts = \
            xray.scatterer_grad_flags_counts(sh.structure_shifted.scatterers())
     if(grad_flags_counts.u_aniso):
        sfd_d_target_d_u_cart = sfd.d_target_d_u_cart()
        map0_d_target_d_u_cart = map0.d_target_d_u_cart()
     gradients_2 = []
     for i_scatterer,scatterer in enumerate(sh.structure_shifted.scatterers()):
       if(scatterer.flags.use_u_iso()):   parameter_name = "u_iso"
       if(scatterer.flags.use_u_aniso()): parameter_name = "u_star"
       if(parameter_name == "u_iso" and scatterer.flags.grad_u_iso()):
          direct_summ = sfd.d_target_d_u_iso()[i_scatterer]
          fast_gradie = map0.d_target_d_u_iso()[i_scatterer]
          gradients_2.append([direct_summ, fast_gradie])
       if parameter_name == "u_star" and scatterer.flags.grad_u_aniso():
        sfd_star = sfd.d_target_d_u_star()[i_scatterer]
        sfd_cart = adptbx.grad_u_star_as_u_cart(
          structure_ideal.unit_cell(), sfd_star)
        assert approx_equal(
          sfd_star,
          adptbx.grad_u_cart_as_u_star(structure_ideal.unit_cell(), sfd_cart))
        for ij in xrange(6):
          direct_summ = sfd_d_target_d_u_cart[i_scatterer][ij]
          fast_gradie = map0_d_target_d_u_cart[i_scatterer][ij]
          gradients_2.append([direct_summ, fast_gradie])
     for g1,g2 in zip(gradients_1, gradients_2):
       assert approx_equal(g1, g2)
     sys.stdout.flush()
def test_fmodel_stuff(energy,FE1_model,FE2_model):
  # section 1. C2 models.  a) whole pdb, b) no Fe, c) FE1 only, d) FE2 only
  C2_structures = get_C2_structures()
  print("C2 models validate OK")
  # section 2.
  if False:
    for structure in C2_structures:
     GF = gen_fmodel_with_complex.from_structure(structure,energy).from_parameters()
     ID = GF.get_intensity_dictionary()
  # section 3. Validate that the old script work2_for_aca_lsq/remake_range_intensities.py
  #            gives same intensities as the new gen_fmodel_with_complex class, for the
  #            simple case of the reduced model at energy=7125 eV
  from LS49.work2_for_aca_lsq.remake_range_intensities import \
    remake_intensities_at_energy as old_algorithm
  print("old")
  ID_ref = old_algorithm(energy,FE1_model,FE2_model)
  print("new")
  GF = gen_fmodel_with_complex.from_structure(C2_structures[0],energy).from_parameters()
  GF.reset_specific_at_energy(label_has="FE1",tables=FE1_model,newvalue=energy)
  GF.reset_specific_at_energy(label_has="FE2",tables=FE2_model,newvalue=energy)
  GF = GF.as_P1_primitive()
  ID_new = GF.get_intensity_dictionary()
  for key in ID_ref:
    assert ID_ref[key]==ID_new[key]
  assert len(ID_ref)==len(ID_new)
  print("whole structure validates OK")
  # section 4. Validate that Fmodel(whole pdb) = Fbulk + Fcalc(non-Fe) + Fcalc(FE1) + Fcalc(FE2)
  #            For this validation it is necessary from cctbx.xray import structure_factors to carry the arithmetic using A+iB, not F*F
  #GF_whole = GF #from above, but compute it again here to use algo=direct
  GF_whole = gen_fmodel_with_complex.from_structure(C2_structures[0],energy).from_parameters(algorithm="fft")
  GF_whole.reset_specific_at_energy(label_has="FE1",tables=FE1_model,newvalue=energy)
  GF_whole.reset_specific_at_energy(label_has="FE2",tables=FE2_model,newvalue=energy)
  GF_whole = GF_whole.as_P1_primitive()
  f_container = GF_whole.get_fmodel()
  Fmodel_whole = f_container.f_model
  Fcalc_whole = f_container.fmodel.f_calc()
  Fbulk = Fcalc_whole.customized_copy(data=Fmodel_whole.data()-Fcalc_whole.data())
  GF_non_Fe = gen_fmodel_with_complex.from_structure(C2_structures[1],energy).from_parameters(algorithm="fft")
  GF_non_Fe = GF_non_Fe.as_P1_primitive()
  f_container = GF_non_Fe.get_fmodel()
  Fcalc_non_Fe = f_container.fmodel.f_calc()
  GF_FE1 = gen_fmodel_with_complex.from_structure(C2_structures[2],energy).from_parameters(algorithm="direct")
  GF_FE1.reset_specific_at_energy(label_has="FE1",tables=FE1_model,newvalue=energy)
  GF_FE1 = GF_FE1.as_P1_primitive()
  f_container = GF_FE1.get_fmodel()
  Fcalc_FE1 = f_container.fmodel.f_calc()
  GF_FE2 = gen_fmodel_with_complex.from_structure(C2_structures[3],energy).from_parameters(algorithm="direct")
  GF_FE2.reset_specific_at_energy(label_has="FE2",tables=FE2_model,newvalue=energy)
  GF_FE2 = GF_FE2.as_P1_primitive()
  f_container = GF_FE2.get_fmodel()
  Fcalc_FE2 = f_container.fmodel.f_calc()
  # subpoint 4a.  Fcalc(all) = Fcalc(non-FE)+Fcalc(FE1)+Fcalc(FE2)
  test4a = Fcalc_whole.customized_copy(data = Fcalc_whole.data() -
                                              Fcalc_non_Fe.data() -
                                              Fcalc_FE1.data() - Fcalc_FE2.data())
  #print (list(test4a.data()))
  if True:
    n_outliers = 0
    for ikey,key in enumerate(test4a.indices()):
      diff0 = Fcalc_whole.data()[ikey]-Fcalc_non_Fe.data()[ikey]
      diff1 = diff0 - Fcalc_FE1.data()[ikey]
      test4a_diff = test4a.data()[ikey]
      #It's not exact because the protein Fcalc's are done by FFT algorithm, but
      # the lack of closure is generally < 1%.
      if abs(test4a_diff) > 0.01 * abs(Fcalc_whole.data()[ikey]):
        n_outliers += 1
        print ("%18s %8.2f /%8.2f %8.2f /%8.2f %8.2f /%8.2f %8.2f"%(
                               key,abs(Fcalc_whole.data()[ikey]),
                                   abs(Fcalc_non_Fe.data()[ikey]),
                                   abs(diff0),
                                   abs(Fcalc_FE1.data()[ikey]),
                                   abs(diff1),
                                   abs(Fcalc_FE2.data()[ikey]),
                                   abs(test4a_diff)
        ))
    print("Test 4a N_outliers: %d out of %d"%(n_outliers, len(test4a.indices())))
    assert (n_outliers / len(test4a.indices())) < 0.01
  # subpoint 4b.  Fmodel(whole pdb) = Fbulk + Fcalc(non-Fe) + Fcalc(FE1) + Fcalc(FE2)
  test4b = Fmodel_whole.customized_copy(data = Fmodel_whole.data() -
                                               Fbulk.data() - Fcalc_non_Fe.data() -
                                              Fcalc_FE1.data() - Fcalc_FE2.data())
  n_outliers = 0
  for ikey,key in enumerate(test4b.indices()):
      test4b_diff = test4b.data()[ikey]
      #It's not exact because the protein Fcalc's are done by FFT algorithm, but
      # the lack of closure is generally < 1%.
      if abs(test4b_diff) > 0.01 * abs(Fmodel_whole.data()[ikey]):
        n_outliers += 1
        print ("%18s %8.2f / %8.2f"%(key,abs(Fmodel_whole.data()[ikey]),
                                   abs(test4b_diff)
        ))
  print("Test 4b N_outliers: %d out of %d"%(n_outliers, len(test4b.indices())))
  assert (n_outliers / len(test4b.indices())) < 0.01

  print("Complex arithmetic validates OK")
  # section 5. Repeat the section 4 assertions, but
  # section 5a.  Assign different FE1(f',f") and FE2(f',f") & calculate Fmodel(whole)
  # section 5b.  Assemble the same answer but with explicit Python-coded Fcalcs(FE1,FE2)

  table = FE1_model
  print(table.fp_fdp_at_wavelength(angstroms = 12398.425/energy))
  new_FE1 = george_sherrell_proxy(-5,9)
  new_FE2 = george_sherrell_proxy(-4,8)
  GF_whole.reset_specific_at_energy(label_has="FE1",tables=new_FE1,newvalue=energy)
  GF_whole.reset_specific_at_energy(label_has="FE2",tables=new_FE2,newvalue=energy)
  f_container = GF_whole.get_fmodel()
  Fmodel_whole_new_fpfdp = f_container.f_model

  GF_FE1.reset_specific_at_energy(label_has="FE1",tables=new_FE1,newvalue=energy)
  f_container = GF_FE1.get_fmodel()
  Fcalc_FE1 = f_container.fmodel.f_calc()

  GF_FE2.reset_specific_at_energy(label_has="FE2",tables=new_FE2,newvalue=energy)
  f_container = GF_FE2.get_fmodel()
  Fcalc_FE2 = f_container.fmodel.f_calc()

  MS = Fmodel_whole_new_fpfdp.set() # avoid having to repeatedly calculate indices
  CS = Fmodel_whole_new_fpfdp.crystal_symmetry() # same here
  ALGO = structure_factors.from_scatterers(crystal_symmetry=CS,
                                           d_min=GF_whole.params2.high_resolution)
  from_scatterers_direct_fe1 = ALGO(xray_structure=GF_FE1.xray_structure,
                                    miller_set=MS,algorithm="direct")
  Fcalc_FE1_dir = from_scatterers_direct_fe1.f_calc()
  from_scatterers_direct_fe2 = ALGO(xray_structure=GF_FE2.xray_structure,
                                    miller_set=MS,algorithm="direct")
  Fcalc_FE2_dir = from_scatterers_direct_fe2.f_calc()

  for ikey,key in enumerate(MS.indices()):
        #print ("%18s %8.2f %8.2f"%(key,abs(Fcalc_FE1.data()[ikey]-Fcalc_FE1_dir.data()[ikey]),
        #                           abs(Fcalc_FE2.data()[ikey]-Fcalc_FE2_dir.data()[ikey])
        #))
    assert abs(Fcalc_FE1.data()[ikey]-Fcalc_FE1_dir.data()[ikey])==0.
    assert abs(Fcalc_FE2.data()[ikey]-Fcalc_FE2_dir.data()[ikey])==0.
  print("Test 5b, calculation with modified fp fdp (low-level interface) validates OK")

  """
  Here we actually develop the Python code to give the A+iB for FE1 and FE2.
  looks like we should develop a new direct class to calculate F, dF/dfp, dF/dfdp
  all in one swoop, within a C++ extension module.  Use this extension to calculate
  Fcalc for FE1,FE2, instead of the conventional formalism.

  actually, gradients direct already exists. So is it possible to just wrap existing
  functions at a low-enough level to get the answer?
see tst_xray for usage.
  """

  # section 6. Validate analytical derivatives' consistency with finite differences,
  #            using correlation coefficient as a score.
  # section 6a. Get analytical derivatives from a low-level interface
  gradient_flags=xray.structure_factors.gradient_flags(
     site=False,
     u_iso=False,
     u_aniso=False,
     occupancy=False,
     fp=True,
     fdp=True)
  xray.set_scatterer_grad_flags(scatterers = GF_FE1.xray_structure.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  xray.set_scatterer_grad_flags(scatterers = GF_FE2.xray_structure.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  print ("gradients")
  sf1 = xray.ext.each_hkl_gradients_direct(
    MS.unit_cell(), MS.space_group(), MS.indices(), GF_FE1.xray_structure.scatterers(), None,
    GF_FE1.xray_structure.scattering_type_registry(), GF_FE1.xray_structure.site_symmetry_table(),
    0)
  sf2 = xray.ext.each_hkl_gradients_direct(
    MS.unit_cell(), MS.space_group(), MS.indices(), GF_FE2.xray_structure.scatterers(), None,
    GF_FE2.xray_structure.scattering_type_registry(), GF_FE2.xray_structure.site_symmetry_table(),
    0)

  print("Test 6a, Get analytical derivatives from a low-level interface")
  for excursion in [0.0001,0.001,0.01]:

    # finite differences
    incr_FE1_fp = george_sherrell_proxy(-5+excursion,9)
    incr_FE1_fdp = george_sherrell_proxy(-5,9+excursion)

    GF_FE1.reset_specific_at_energy(label_has="FE1",tables=incr_FE1_fp,newvalue=energy)
    f_container = GF_FE1.get_fmodel()
    incr_Fcalc_FE1_fp = f_container.fmodel.f_calc()

    GF_FE1.reset_specific_at_energy(label_has="FE1",tables=incr_FE1_fdp,newvalue=energy)
    f_container = GF_FE1.get_fmodel()
    incr_Fcalc_FE1_fdp = f_container.fmodel.f_calc()

    #analytical
    fp_analytical = Fcalc_FE1.data() + sf1.d_fcalc_d_fp()*excursion
    fdp_analytical = Fcalc_FE1.data() + sf1.d_fcalc_d_fdp()*excursion

    diffs_fp = fp_analytical - incr_Fcalc_FE1_fp.data()
    diffs_fdp = fdp_analytical - incr_Fcalc_FE1_fdp.data()

    #validation
    RMSDfp = math.sqrt( flex.sum( flex.pow( flex.abs(diffs_fp) ,2 ) ) )
    RMSDfdp = math.sqrt(flex.sum(flex.pow( flex.abs(diffs_fdp) ,2)))
    print ("with excursion %16.14f the RMSD are fp %16.14f and fdp %16.14f"%(excursion,RMSDfp,RMSDfdp))
    assert RMSDfp < 1.E-10
    assert RMSDfdp < 1.E-10
  print("Test 6b, Validate analytical vs. finite differences")
Beispiel #24
0
    def __init__(
        self,
        structure,
        restraints_manager,
        temperature=300,
        protein_thermostat=False,
        n_steps=200,
        time_step=0.0005,
        initial_velocities_zero_fraction=0,
        vxyz=None,
        interleaved_minimization_params=None,
        n_print=20,
        fmodel=None,
        xray_target_weight=None,
        chem_target_weight=None,
        shift_update=0.0,
        xray_structure_last_updated=None,
        xray_gradient=None,
        reset_velocities=True,
        stop_cm_motion=False,
        update_f_calc=True,
        er_data=None,
        log=None,
        stop_at_diff=None,
        verbose=-1,
    ):
        adopt_init_args(self, locals())
        assert self.n_print > 0
        assert self.temperature >= 0.0
        assert self.n_steps >= 0
        assert self.time_step >= 0.0
        assert self.log is not None or self.verbose < 1
        xray.set_scatterer_grad_flags(scatterers=self.structure.scatterers(), site=True)
        self.structure_start = self.structure.deep_copy_scatterers()
        self.k_boltz = boltzmann_constant_akma
        self.ekcm = 0.0
        self.timfac = akma_time_as_pico_seconds
        self.weights = self.structure.atomic_weights()
        if vxyz is None:
            self.vxyz = flex.vec3_double(self.weights.size(), (0, 0, 0))
        else:
            self.vxyz = vxyz
        if self.er_data is not None and self.er_data.velocities is not None:
            self.vxyz = self.er_data.velocities

        if self.er_data is not None:
            self.er_data.geo_grad_rms = 0
            self.er_data.xray_grad_rms = 0

        if self.fmodel is not None:
            if self.er_data is None:
                self.fmodel_copy = self.fmodel.deep_copy()
            else:
                self.fmodel_copy = self.fmodel
                if self.er_data.fix_scale_factor is not None:
                    self.fmodel_copy.set_scale_switch = self.er_data.fix_scale_factor
            #
            self.target_functor = self.fmodel_copy.target_functor()
            assert self.chem_target_weight is not None
            assert self.xray_target_weight is not None
            if self.xray_gradient is None:
                self.xray_gradient = self.xray_grads()
        #
        imp = self.interleaved_minimization_params
        self.interleaved_minimization_flag = imp is not None and imp.number_of_iterations > 0
        if self.interleaved_minimization_flag:
            assert imp.time_step_factor > 0
            self.time_step *= imp.time_step_factor
            if "bonds" not in imp.restraints:
                raise Sorry('Invalid choice: %s.restraints: "bonds" must always be included.' % imp.__phil_path__())
            self.interleaved_minimization_angles = "angles" in imp.restraints
        else:
            self.interleaved_minimization_angles = False
        #
        self.tstep = self.time_step / self.timfac
        self.show_gradient_rms = False  # XXX debug option
        #
        self()
Beispiel #25
0
def exercise(space_group_info,
             n_elements=10,
             table="wk1995",
             d_min=2.0,
             k_sol=0.35,
             b_sol=45.0,
             b_cart=None,
             quick=False,
             verbose=0):
    xray_structure = random_structure.xray_structure(
        space_group_info=space_group_info,
        elements=(("O", "N", "C") * (n_elements // 3 + 1))[:n_elements],
        volume_per_atom=100,
        min_distance=1.5,
        general_positions_only=True,
        random_u_iso=False,
        random_occupancy=False)
    xray_structure.scattering_type_registry(table=table)
    sg = xray_structure.space_group()
    uc = xray_structure.unit_cell()
    u_cart_1 = adptbx.random_u_cart(u_scale=5, u_min=5)
    u_star_1 = adptbx.u_cart_as_u_star(uc, u_cart_1)
    b_cart = adptbx.u_star_as_u_cart(uc, sg.average_u_star(u_star=u_star_1))
    for anomalous_flag in [False, True]:
        scatterers = xray_structure.scatterers()
        if (anomalous_flag):
            assert scatterers.size() >= 7
            for i in [1, 7]:
                scatterers[i].fp = -0.2
                scatterers[i].fdp = 5
            have_non_zero_fdp = True
        else:
            for i in [1, 7]:
                scatterers[i].fp = 0
                scatterers[i].fdp = 0
            have_non_zero_fdp = False
        f_obs = abs(
            xray_structure.structure_factors(
                d_min=d_min,
                anomalous_flag=anomalous_flag,
                cos_sin_table=sfg_params.cos_sin_table,
                algorithm=sfg_params.algorithm).f_calc())
        f_obs_comp = f_obs.structure_factors_from_scatterers(
            xray_structure=xray_structure,
            algorithm=sfg_params.algorithm,
            cos_sin_table=sfg_params.cos_sin_table).f_calc()
        f_obs = abs(f_obs_comp)
        flags = f_obs.generate_r_free_flags(fraction=0.1, max_free=99999999)
        #flags = flags.array(data = flex.bool(f_obs.data().size(), False))
        xrs = xray_structure.deep_copy_scatterers()
        xrs.shake_sites_in_place(rms_difference=0.3)
        for target in mmtbx.refinement.targets.target_names:
            if target == "mli": continue
            if (quick):
                if (target not in ["ls_wunit_k1", "ml", "mlhl", "ml_sad"]):
                    continue
            if (target == "mlhl"):
                if (have_non_zero_fdp): continue  # XXX gradients not correct!
                experimental_phases = generate_random_hl(miller_set=f_obs)
            else:
                experimental_phases = None
            if (target == "ml_sad"
                    and (not anomalous_flag
                         or mmtbx.refinement.targets.phaser is None)):
                continue
            print("  ", target)
            xray.set_scatterer_grad_flags(scatterers=xrs.scatterers(),
                                          site=True)
            ss = 1. / flex.pow2(f_obs.d_spacings().data()) / 4.
            u_star = adptbx.u_cart_as_u_star(f_obs.unit_cell(),
                                             adptbx.b_as_u(b_cart))
            k_anisotropic = mmtbx.f_model.ext.k_anisotropic(
                f_obs.indices(), u_star)
            k_mask = mmtbx.f_model.ext.k_mask(ss, k_sol, b_sol)
            fmodel = mmtbx.f_model.manager(
                xray_structure=xrs,
                f_obs=f_obs,
                r_free_flags=flags,
                target_name=target,
                abcd=experimental_phases,
                sf_and_grads_accuracy_params=sfg_params,
                k_mask=k_mask,
                k_anisotropic=k_anisotropic,
                mask_params=masks.mask_master_params.extract())
            fmodel.update_xray_structure(xray_structure=xrs,
                                         update_f_calc=True,
                                         update_f_mask=True)
            xray.set_scatterer_grad_flags(
                scatterers=fmodel.xray_structure.scatterers(), site=True)
            fmodel.update_xray_structure(update_f_calc=True)
            t_f = fmodel.target_functor()
            t_f.prepare_for_minimization()
            gs = t_f(compute_gradients=True).d_target_d_site_cart().as_double()
            gfd = finite_differences_site(target_functor=t_f)
            cc = flex.linear_correlation(gs, gfd).coefficient()
            if (0 or verbose):
                print("ana:", list(gs))
                print("fin:", list(gfd))
                print("rat:", [f / a for a, f in zip(gs, gfd)])
                print(target, "corr:", cc, space_group_info)
                print()
            diff = gs - gfd
            diff /= max(1, flex.max(flex.abs(gfd)))
            tolerance = 1.2e-5
            assert approx_equal(abs(flex.min(diff)), 0.0, tolerance)
            assert approx_equal(abs(flex.mean(diff)), 0.0, tolerance)
            assert approx_equal(abs(flex.max(diff)), 0.0, tolerance)
            assert approx_equal(cc, 1.0, tolerance)
            fmodel.model_error_ml()
def get_weight(fmodel=None,
               restraints_manager=None,
               sites=None,
               transformations=None,
               u_iso=None,
               ncs_restraints_group_list=None,
               refine_selection=None,
               minimized_obj=None):
  """
  Calculates weights for refinements by slightly shaking the minimized
  parameters and taking the ratio:
  (restraint manager grad norm / parameters gradient norm)


  When calling this function during refinement macro cycle, the minimized
  object, "minimized_obj" , may contains fmodel, restraints_manager,
  refinement type info (sites, transformations, u_iso) and
  ncs_restraints_group_list.


  Args:
    fmodel : F-model object
    restraints_manager: Restraints manager object
    sites (bool): Refine by sites
    u_iso (bool): Refine using u_iso
    transformations (bool): Refine using transformations
      rotations, translations (matrix objects):
    ncs_restraints_group_list: list of ncs_restraint_group objects
    refine_selection (flex.size_t): selection of all ncs related copies and
      non ncs related parts to be included in selection (to be refined)
    minimized_obj:Minimization object containing all the other
      parameters above

  Returns:
    weight (int):

  Example:
  >>>get_weight(minimized_obj=minimized_obj)

  or

  >>>get_weight(fmodel=fmodel,
                restraints_manager=grm,
                sites=sites,
                transformations=transformations,
                u_iso=u_iso,
                ncs_restraints_group_list=ncs_restraints_group_list,
                refine_selection=refine_selection)
  """
  grm  = restraints_manager
  extended_ncs_selection = None
  # extract parameters from minimized_obj
  if minimized_obj:
    mo = minimized_obj
    fmodel = mo.fmodel
    grm = mo.grm
    sites = mo.sites
    transformations = mo.transformations
    u_iso = mo.u_iso
    ncs_restraints_group_list = mo.ncs_restraints_group_list
  # del: consider deleting the code below
  #   if hasattr(mo,'extended_ncs_selection'):
  #     extended_ncs_selection = mo.extended_ncs_selection
  # if not extended_ncs_selection:
  #   extended_ncs_selection = get_extended_ncs_selection(
  #     ncs_restraints_group_list=ncs_restraints_group_list,
  #     refine_selection=refine_selection)

  # make sure sufficient input is provided
  assert bool(fmodel), 'F-model is not provided'
  assert bool(grm), 'F-restraints_manager is not provided'
  assert [sites,transformations,u_iso].count(True)==1, 'Refinement type Error'
  #
  have_transforms = ncs_restraints_group_list != []
  fmdc = fmodel.deep_copy()
  if sites:
    fmdc.xray_structure.shake_sites_in_place(mean_distance=0.3)
  elif u_iso:
    fmdc.xray_structure.shake_adp()
  elif transformations and have_transforms:
    x = concatenate_rot_tran(
      ncs_restraints_group_list = ncs_restraints_group_list)
    x = shake_transformations(
      x = x,
      shake_angles_sigma=0.035,
      shake_translation_sigma=0.5)
  fmdc.update_xray_structure(xray_structure = fmdc.xray_structure,
    update_f_calc=True)
  fmdc.xray_structure.scatterers().flags_set_grads(state=False)
  if sites or transformations:
    xray.set_scatterer_grad_flags(
      scatterers = fmdc.xray_structure.scatterers(),
      site       = True)
    # fmodel gradients
    gxc = flex.vec3_double(fmdc.one_time_gradients_wrt_atomic_parameters(
      site = True).packed())
    # restraints manager, energy sites gradients
    gc = grm.energies_sites(
      sites_cart        = fmdc.xray_structure.sites_cart(),
      compute_gradients = True).gradients
  elif u_iso:
    # Create energies_site gradient, to create geometry_restraints_manager
    # plain_pair_sym_table needed for the energies_adp_iso
    import mmtbx.refinement.adp_refinement
    temp = mmtbx.refinement.adp_refinement.adp_restraints_master_params
    iso_restraints = temp.extract().iso
    gc = grm.energies_sites(
      sites_cart        = fmdc.xray_structure.sites_cart(),
      compute_gradients = True).gradients
    xray.set_scatterer_grad_flags(
      scatterers = fmdc.xray_structure.scatterers(),
      u_iso      = True)
    # fmodel gradients
    gxc = fmdc.one_time_gradients_wrt_atomic_parameters(
      u_iso = True).as_double()
    # manager restraints, energy sites gradients
    gc = grm.energies_adp_iso(
      xray_structure    = fmdc.xray_structure,
      parameters        = iso_restraints,
      use_u_local_only  = iso_restraints.use_u_local_only,
      use_hd            = False,
      compute_gradients = True).gradients
  if transformations and have_transforms:
    # Apply NCS relations to gradients
    gxc = compute_transform_grad(
      grad_wrt_xyz      = gxc.as_double(),
      ncs_restraints_group_list = ncs_restraints_group_list,
      xyz_asu           = fmdc.xray_structure.sites_cart(),
      x                 = x)
    gc = compute_transform_grad(
      grad_wrt_xyz      = gc.as_double(),
      ncs_restraints_group_list = ncs_restraints_group_list,
      xyz_asu           = fmdc.xray_structure.sites_cart(),
      x                 = x)

  weight = 1.
  gc_norm  = gc.norm()
  gxc_norm = gxc.norm()
  if(gxc_norm != 0.0):
    weight = gc_norm / gxc_norm

  weight =min(weight,1e6) # limit the weight max value
  return weight
def exercise(target_functor,
             data_type,
             parameter_name,
             space_group_info,
             anomalous_flag,
             cartesian_flag,
             n_elements=9,
             d_min=2.5,
             shake_sigma=0.25,
             test_hard=True,
             verbose=0):
    assert data_type == 'F' or data_type == 'F^2'
    if (data_type == 'F^2'
            and not target_functor == xray.unified_least_squares_residual):
        return
    if (parameter_name != "site" and cartesian_flag == True): return
    if (parameter_name == "fdp" and not anomalous_flag): return
    structure_ideal = random_structure.xray_structure(
        space_group_info,
        elements=(("O", "N", "C") * (n_elements))[:n_elements],
        volume_per_atom=100,
        random_f_prime_d_min=d_min,
        random_f_double_prime=anomalous_flag,
        use_u_aniso=True,
        use_u_iso=False,
        random_u_cart_scale=0.3,
        random_u_iso=False,
        random_occupancy=True)
    if (parameter_name in ["u_star", "u_iso"]): shake_sigma = shake_sigma / 2.
    random_structure.random_modify_adp_and_adp_flags(
        scatterers=structure_ideal.scatterers(),
        random_u_iso_scale=0.3,
        random_u_iso_min=0.0,
        parameter_name=parameter_name)
    rnd_f_calc = structure_ideal.structure_factors(
        anomalous_flag=anomalous_flag, d_min=d_min,
        algorithm="direct").f_calc()
    if data_type == 'F':
        y_obs = abs(rnd_f_calc)
    elif data_type == 'F^2':
        y_obs = rnd_f_calc.norm()
        y_obs.set_observation_type_xray_intensity()
    structure_shake = structure_ideal.random_modify_parameters(
        parameter_name, shake_sigma, vary_z_only=False)
    assert tuple(structure_ideal.special_position_indices()) \
        == tuple(structure_shake.special_position_indices())
    target_ftor = target_functor(y_obs)
    for structure in (structure_ideal, structure_shake)[:]:  #SWITCH
        f_calc = y_obs.structure_factors_from_scatterers(
            xray_structure=structure, algorithm="direct").f_calc()
        target_result = target_ftor(f_calc, compute_derivatives=True)
        if (structure == structure_ideal):
            assert abs(target_result.target()) < 1.e-5

    gradient_flags = xray.structure_factors.gradient_flags(
        site=(parameter_name == "site" or random.choice((False, True))),
        u_iso=(parameter_name == "u_iso" or random.choice((False, True))),
        u_aniso=(parameter_name == "u_star" or random.choice((False, True))),
        occupancy=(parameter_name == "occupancy" or random.choice(
            (False, True))),
        fp=(parameter_name == "fp" or random.choice((False, True))),
        fdp=(parameter_name == "fdp" or (anomalous_flag and random.choice(
            (False, True)))))
    xray.set_scatterer_grad_flags(scatterers=structure.scatterers(),
                                  site=gradient_flags.site,
                                  u_iso=gradient_flags.u_iso,
                                  u_aniso=gradient_flags.u_aniso,
                                  occupancy=gradient_flags.occupancy,
                                  fp=gradient_flags.fp,
                                  fdp=gradient_flags.fdp)
    grad_flags_counts = xray.scatterer_grad_flags_counts(
        structure.scatterers())
    sf = xray.structure_factors.gradients_direct(
        xray_structure=structure,
        u_iso_refinable_params=None,
        miller_set=y_obs,
        d_target_d_f_calc=target_result.derivatives(),
        n_parameters=0)
    if (parameter_name == "site"):
        d_analytical = sf.d_target_d_site_frac()
        if (cartesian_flag
            ):  # average d_analytical or d_numerical, but not both
            structure_ideal.apply_special_position_ops_d_target_d_site(
                d_analytical)
        if (cartesian_flag):
            d_analytical = sf.d_target_d_site_cart()
        d_numerical = finite_differences_site(cartesian_flag, target_ftor,
                                              structure)
        if (not cartesian_flag
            ):  # aver. d_analytical or d_numerical, but not both
            structure_ideal.apply_special_position_ops_d_target_d_site(
                d_numerical)
    elif (parameter_name == "u_star" and grad_flags_counts.use_u_aniso > 0):
        d_analytical = sf.d_target_d_u_star()
        d_numerical = finite_differences_u_star(target_ftor, structure)
    else:
        if (parameter_name == "occupancy"):
            d_analytical = sf.d_target_d_occupancy()
        elif (parameter_name == "u_iso" and grad_flags_counts.use_u_iso > 0):
            d_analytical = sf.d_target_d_u_iso()
        elif (parameter_name == "fp"):
            d_analytical = sf.d_target_d_fp()
        elif (parameter_name == "fdp"):
            d_analytical = sf.d_target_d_fdp()
        else:
            raise RuntimeError
        d_numerical = finite_differences_scalar(parameter_name, target_ftor,
                                                structure)
    linear_regression_test(d_analytical,
                           d_numerical,
                           test_hard,
                           verbose=verbose)
    if (parameter_name == "u_iso" and grad_flags_counts.use_u_iso > 0):
        u_iso_refinable_params = flex.double()
        for scatterer in structure.scatterers():
            scatterer.flags.set_tan_u_iso(True)
            scatterer.flags.set_grad_u_iso(gradient_flags.u_iso)
            param = random.randint(90, 120)
            scatterer.flags.param = param
            value = math.tan(scatterer.u_iso * math.pi / adptbx.b_as_u(param) -
                             math.pi / 2)
            u_iso_refinable_params.append(value)
        sf = xray.structure_factors.gradients_direct(
            xray_structure=structure,
            u_iso_refinable_params=u_iso_refinable_params,
            miller_set=y_obs,
            d_target_d_f_calc=target_result.derivatives(),
            n_parameters=0)
        d_analytical = sf.d_target_d_u_iso()
        d_numerical = finite_differences_scalar("tan_u_iso", target_ftor,
                                                structure)
        linear_regression_test(d_analytical,
                               d_numerical,
                               test_hard,
                               verbose=verbose)
Beispiel #28
0
  def __init__(self,
        fmodel,
        ncs_transformations_object=None,
        ncs_atom_selection = None,
        run_finite_grad_differences_test = False,
        max_iterations=100,
        sites = False,
        u_iso = False):
    """Implementing strict NCS to refinement minimization

    Arguments:
    fmodel : fmodel of the complete ASU
    ncs_transformation_object : information on the NCS to ASU
       transformations and chains. A multimer object
    ncs_atom_selection : boolean array for selection of atoms in the NCS.
       A flex bool array
    """
    self.fmodel = fmodel
    self.fmodel.xray_structure.scatterers().flags_set_grads(state=False)
    self.x_target_functor = self.fmodel.target_functor()
    self.sites = sites
    self.u_iso = u_iso
    self.ncs_to_asu = ncs_transformations_object
    self.run_finite_grad_differences_test = run_finite_grad_differences_test
    if run_finite_grad_differences_test:
      # perform gradient calc test
      self.buffer_max_grad = flex.double()
      self.buffer_calc_grad = flex.double()
    # xray structure of NCS chains for self.x
    ncs_fmodel_xrs = self.fmodel.xray_structure.select(ncs_atom_selection)
    if(self.sites):
      self.x = ncs_fmodel_xrs.sites_cart().as_double()
    if(self.u_iso):
      assert ncs_fmodel_xrs.scatterers().size() == \
        ncs_fmodel_xrs.use_u_iso().count(True)
      self.x = ncs_fmodel_xrs.extract_u_iso_or_u_equiv()
    # Use all scatterers for gradient calculations
    if(self.sites):
      xray.set_scatterer_grad_flags(
        scatterers = self.fmodel.xray_structure.scatterers(),
        site       = True)
    if(self.u_iso):
      sel = flex.bool(
        self.fmodel.xray_structure.scatterers().size(), True).iselection()
      self.fmodel.xray_structure.scatterers().flags_set_grad_u_iso(
        iselection = sel)
    self.minimizer = scitbx.lbfgs.run(
      target_evaluator=self,
      termination_params=scitbx.lbfgs.termination_parameters(
        max_iterations=max_iterations),
      exception_handling_params=scitbx.lbfgs.exception_handling_parameters(
        ignore_line_search_failed_rounding_errors=True,
        ignore_line_search_failed_step_at_lower_bound=True,
        ignore_line_search_failed_maxfev=True))
    self.fmodel.xray_structure.tidy_us()
    self.fmodel.xray_structure.apply_symmetry_sites()
    self.fmodel.update_xray_structure(
      xray_structure = self.fmodel.xray_structure,
      update_f_calc  = True)
    self.tested = 0
    if run_finite_grad_differences_test:
      if self.buffer_max_grad:
        print 'compare max_grad to calc_grad'
        for a,f in zip(self.buffer_max_grad, self.buffer_calc_grad):
          print '{0:10.5f}   {1:10.5f}  delta = {2:10.5f}'.format(a,f,abs(a-f))
        print '-'*45
        diff = flex.abs(self.buffer_max_grad - self.buffer_calc_grad)
        s = diff < 1.e-3
        if(s.size()>0 and s.count(True)*100./s.size()>50):
          self.tested += 1
Beispiel #29
0
def exercise_constrained_lbfgs(xray_structure,
                               constraints_list,
                               t_celsius,
                               d_min=0.5,
                               shake_sites_rmsd=0.5,
                               shake_u_iso_spread=0,
                               shake_u_aniso_spread=0,
                               grad_site=True,
                               grad_u_iso=True,
                               grad_u_aniso=False,
                               grad_occupancy=False,
                               grad_fp_fdp=False,
                               lbfgs_m=5,
                               lbfgs_max_iterations=1000,
                               verbose=0):

  xs = xray_structure
  xray.set_scatterer_grad_flags(scatterers=xs.scatterers(),
                                site=grad_site,
                                u_iso=grad_u_iso,
                                u_aniso=grad_u_aniso,
                                occupancy=grad_occupancy,
                                fp=grad_fp_fdp,
                                fdp=grad_fp_fdp,
                                tan_u_iso=False,
                                param=0)

  xs0 = xs.deep_copy_scatterers()
  mi = xs0.build_miller_set(anomalous_flag=False, d_min=d_min)
  fo_sq = mi.structure_factors_from_scatterers(
    xs0, algorithm="direct").f_calc().norm()
  fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1))
  fo_sq.set_observation_type_xray_intensity()
  y_obs = fo_sq
  #y_obs = fo_sq.f_sq_as_f()
  if grad_site:
    xs.shake_sites_in_place(rms_difference=shake_sites_rmsd)
  if not grad_u_aniso: shake_u_aniso_spread = 0
  if not grad_u_iso: shake_u_iso_spread = 0
  if grad_u_aniso or grad_u_iso:
    xs.shake_adp(spread=shake_u_iso_spread, aniso_spread=shake_u_aniso_spread)
  xs1 = xs.deep_copy_scatterers()

  core_params = scitbx.lbfgs.core_parameters(m=lbfgs_m, maxfev=100, xtol=1e-5)

  connectivity_table = smtbx.utils.connectivity_table(xs0)

  if constraints_list is None:
    from smtbx.development import generate_hydrogen_constraints
    constraints_list = generate_hydrogen_constraints(
      structure=xs0, connectivity_table=connectivity_table)

  reparametrisation = constraints.reparametrisation(
    xs,
    constraints_list,
    connectivity_table,
    temperature=t_celsius)

  lbfgs_termination_params=scitbx.lbfgs.termination_parameters(
    traditional_convergence_test=False,
    drop_convergence_test_max_drop_eps=1.e-20,
    drop_convergence_test_iteration_coefficient=1,
    min_iterations=500,
    max_iterations=lbfgs_max_iterations)

  minimizer = lbfgs(
    target_functor=xray.target_functors.unified_least_squares_residual(y_obs),
    xray_structure=xs,
    reparametrisation=reparametrisation,
    structure_factor_algorithm="direct",
    lbfgs_termination_params=lbfgs_termination_params,
    lbfgs_core_params=core_params,
    reference_structure=xs0,
    verbose=verbose)

  if verbose > 0:
    print "Total parameters: ", xs.n_parameters()
    print "Independent parameters: ", reparametrisation.n_independents

    print "Reference model: "
    xs0.show_angles(distance_cutoff=1.5)
    print
    print "Starting model: "
    xs1.show_angles(distance_cutoff=1.5)
    print
    print "Refined model: "
    xs.show_angles(distance_cutoff=1.5)
    print

    print "n_iter, n_fun: ", minimizer.minimizer.iter(), minimizer.minimizer.nfun()

  h_selection = xs.element_selection('H')

  diff = xray.meaningful_site_cart_differences(
    xs0.select(h_selection, negate=True),
    xs.select(h_selection, negate=True))
  #diff = xray.meaningful_site_cart_differences(xs0, xs)
  #assert diff.max_absolute() < 1e-3
  if verbose > 0:
    diff.show()
    print
  assert diff.max_absolute() < 2e-2, diff.max_absolute()

  diff = xray.meaningful_site_cart_differences(xs0, xs)
  if verbose > 0:
    diff.show()
    print
  # XXX why does this tolerance have to be so high?
  assert diff.max_absolute() < 0.5, diff.max_absolute()
def exercise_negative_parameters(verbose=0):
  structure_default = xray.structure(
    crystal_symmetry = crystal.symmetry(
      unit_cell=((10,13,17,75,80,85)),
      space_group_symbol="P 1"),
    scatterers=flex.xray_scatterer([
      xray.scatterer(label="C", site=(0,0,0), u=0.25)]))
  negative_gaussian = eltbx.xray_scattering.gaussian((1,2), (2,3), -4)
  for i_trial in xrange(7):
    structure = structure_default.deep_copy_scatterers()
    scatterer = structure.scatterers()[0]
    if (i_trial == 1):
      scatterer.occupancy *= -1
    elif (i_trial == 2):
      structure.scattering_type_registry(custom_dict={"C": negative_gaussian})
    elif (i_trial == 3):
      scatterer.u_iso *= -1
    elif (i_trial == 4):
      u_cart = adptbx.random_u_cart(u_scale=1, u_min=-1.1)
      assert max(adptbx.eigenvalues(u_cart)) < 0
      u_star = adptbx.u_cart_as_u_star(structure.unit_cell(), u_cart)
      scatterer.u_star = u_star
      scatterer.flags.set_use_u_aniso_only()
    elif (i_trial == 5):
      scatterer.fp = -10
    elif (i_trial == 6):
      scatterer.fp = -3
    f_direct = structure.structure_factors(
      d_min=1, algorithm="direct", cos_sin_table=False).f_calc()
    f_fft = structure.structure_factors(
      d_min=1, algorithm="fft",
      quality_factor=1.e8, wing_cutoff=1.e-10).f_calc()
    if (i_trial == 2):
      assert negative_gaussian.at_d_star_sq(f_fft.d_star_sq().data()).all_lt(0)
    if (i_trial in [5,6]):
      f = structure.scattering_type_registry().gaussian_not_optional(
        scattering_type="C").at_d_star_sq(f_fft.d_star_sq().data())
      if (i_trial == 5):
        assert flex.max(f) + scatterer.fp < 0
      else:
        assert flex.max(f) + scatterer.fp > 0
        assert flex.min(f) + scatterer.fp < 0
    cc = flex.linear_correlation(
      abs(f_direct).data(),
      abs(f_fft).data()).coefficient()
    if (cc < 0.999):
      raise AssertionError("i_trial=%d, correlation=%.6g" % (i_trial, cc))
    elif (0 or verbose):
      print "correlation=%.6g" % cc
    #
    # very simple test of gradient calculations with negative parameters
    structure_factor_gradients = \
      cctbx.xray.structure_factors.gradients(
        miller_set=f_direct,
        cos_sin_table=False)
    target_functor = xray.target_functors.intensity_correlation(
      f_obs=abs(f_direct))
    target_result = target_functor(f_fft, True)
    xray.set_scatterer_grad_flags(scatterers = structure.scatterers(),
                                  site       = True,
                                  u_iso      = True,
                                  u_aniso    = True,
                                  occupancy  = True,
                                  fp         = True,
                                  fdp        = True)
    for algorithm in ["direct", "fft"]:
      grads = structure_factor_gradients(
        xray_structure=structure,
        u_iso_refinable_params=None,
        miller_set=f_direct,
        d_target_d_f_calc=target_result.derivatives(),
        n_parameters = structure.n_parameters(),
        algorithm=algorithm).packed()
Beispiel #31
0
    def __init__(self,
                 structure,
                 restraints_manager,
                 temperature=300,
                 protein_thermostat=False,
                 n_steps=200,
                 time_step=0.0005,
                 initial_velocities_zero_fraction=0,
                 vxyz=None,
                 interleaved_minimization_params=None,
                 n_print=20,
                 fmodel=None,
                 xray_target_weight=None,
                 chem_target_weight=None,
                 shift_update=0.0,
                 xray_structure_last_updated=None,
                 xray_gradient=None,
                 reset_velocities=True,
                 stop_cm_motion=False,
                 update_f_calc=True,
                 er_data=None,
                 log=None,
                 stop_at_diff=None,
                 verbose=-1):
        adopt_init_args(self, locals())
        assert self.n_print > 0
        assert self.temperature >= 0.0
        assert self.n_steps >= 0
        assert self.time_step >= 0.0
        assert self.log is not None or self.verbose < 1
        xray.set_scatterer_grad_flags(scatterers=self.structure.scatterers(),
                                      site=True)
        self.structure_start = self.structure.deep_copy_scatterers()
        self.k_boltz = boltzmann_constant_akma
        self.ekcm = 0.0
        self.timfac = akma_time_as_pico_seconds
        self.weights = self.structure.atomic_weights()
        if (vxyz is None):
            self.vxyz = flex.vec3_double(self.weights.size(), (0, 0, 0))
        else:
            self.vxyz = vxyz
        if (self.er_data is not None and self.er_data.velocities is not None):
            self.vxyz = self.er_data.velocities

        if self.er_data is not None:
            self.er_data.geo_grad_rms = 0
            self.er_data.xray_grad_rms = 0

        if (self.fmodel is not None):
            if self.er_data is None:
                self.fmodel_copy = self.fmodel.deep_copy()
            else:
                self.fmodel_copy = self.fmodel
                if self.er_data.fix_scale_factor is not None:
                    self.fmodel_copy.set_scale_switch = self.er_data.fix_scale_factor
        #
            self.target_functor = self.fmodel_copy.target_functor()
            assert self.chem_target_weight is not None
            assert self.xray_target_weight is not None
            if (self.xray_gradient is None):
                self.xray_gradient = self.xray_grads()
        #
        imp = self.interleaved_minimization_params
        self.interleaved_minimization_flag = (imp is not None
                                              and imp.number_of_iterations > 0)
        if (self.interleaved_minimization_flag):
            assert imp.time_step_factor > 0
            self.time_step *= imp.time_step_factor
            if ("bonds" not in imp.restraints):
                raise Sorry(
                    'Invalid choice: %s.restraints: "bonds" must always be included.'
                    % imp.__phil_path__())
            self.interleaved_minimization_angles = "angles" in imp.restraints
        else:
            self.interleaved_minimization_angles = False
        #
        self.tstep = self.time_step / self.timfac
        self.show_gradient_rms = False  # XXX debug option
        #
        self()
Beispiel #32
0
def exercise_constrained_lbfgs(xray_structure,
                               constraints_list,
                               t_celsius,
                               d_min=0.5,
                               shake_sites_rmsd=0.5,
                               shake_u_iso_spread=0,
                               shake_u_aniso_spread=0,
                               grad_site=True,
                               grad_u_iso=True,
                               grad_u_aniso=False,
                               grad_occupancy=False,
                               grad_fp_fdp=False,
                               lbfgs_m=5,
                               lbfgs_max_iterations=1000,
                               verbose=0):

    xs = xray_structure
    xray.set_scatterer_grad_flags(scatterers=xs.scatterers(),
                                  site=grad_site,
                                  u_iso=grad_u_iso,
                                  u_aniso=grad_u_aniso,
                                  occupancy=grad_occupancy,
                                  fp=grad_fp_fdp,
                                  fdp=grad_fp_fdp,
                                  tan_u_iso=False,
                                  param=0)

    xs0 = xs.deep_copy_scatterers()
    mi = xs0.build_miller_set(anomalous_flag=False, d_min=d_min)
    fo_sq = mi.structure_factors_from_scatterers(
        xs0, algorithm="direct").f_calc().norm()
    fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1))
    fo_sq.set_observation_type_xray_intensity()
    y_obs = fo_sq
    #y_obs = fo_sq.f_sq_as_f()
    if grad_site:
        xs.shake_sites_in_place(rms_difference=shake_sites_rmsd)
    if not grad_u_aniso: shake_u_aniso_spread = 0
    if not grad_u_iso: shake_u_iso_spread = 0
    if grad_u_aniso or grad_u_iso:
        xs.shake_adp(spread=shake_u_iso_spread,
                     aniso_spread=shake_u_aniso_spread)
    xs1 = xs.deep_copy_scatterers()

    core_params = scitbx.lbfgs.core_parameters(m=lbfgs_m,
                                               maxfev=100,
                                               xtol=1e-5)

    connectivity_table = smtbx.utils.connectivity_table(xs0)

    if constraints_list is None:
        from smtbx.development import generate_hydrogen_constraints
        constraints_list = generate_hydrogen_constraints(
            structure=xs0, connectivity_table=connectivity_table)

    reparametrisation = constraints.reparametrisation(xs,
                                                      constraints_list,
                                                      connectivity_table,
                                                      temperature=t_celsius)

    lbfgs_termination_params = scitbx.lbfgs.termination_parameters(
        traditional_convergence_test=False,
        drop_convergence_test_max_drop_eps=1.e-20,
        drop_convergence_test_iteration_coefficient=1,
        min_iterations=500,
        max_iterations=lbfgs_max_iterations)

    minimizer = lbfgs(
        target_functor=xray.target_functors.unified_least_squares_residual(
            y_obs),
        xray_structure=xs,
        reparametrisation=reparametrisation,
        structure_factor_algorithm="direct",
        lbfgs_termination_params=lbfgs_termination_params,
        lbfgs_core_params=core_params,
        reference_structure=xs0,
        verbose=verbose)

    if verbose > 0:
        print "Total parameters: ", xs.n_parameters()
        print "Independent parameters: ", reparametrisation.n_independents

        print "Reference model: "
        xs0.show_angles(distance_cutoff=1.5)
        print
        print "Starting model: "
        xs1.show_angles(distance_cutoff=1.5)
        print
        print "Refined model: "
        xs.show_angles(distance_cutoff=1.5)
        print

        print "n_iter, n_fun: ", minimizer.minimizer.iter(
        ), minimizer.minimizer.nfun()

    h_selection = xs.element_selection('H')

    diff = xray.meaningful_site_cart_differences(
        xs0.select(h_selection, negate=True),
        xs.select(h_selection, negate=True))
    #diff = xray.meaningful_site_cart_differences(xs0, xs)
    #assert diff.max_absolute() < 1e-3
    if verbose > 0:
        diff.show()
        print
    assert diff.max_absolute() < 2e-2, diff.max_absolute()

    diff = xray.meaningful_site_cart_differences(xs0, xs)
    if verbose > 0:
        diff.show()
        print
    # XXX why does this tolerance have to be so high?
    assert diff.max_absolute() < 0.5, diff.max_absolute()
Beispiel #33
0
def exercise_negative_parameters(verbose=0):
    structure_default = xray.structure(
        crystal_symmetry=crystal.symmetry(unit_cell=((10, 13, 17, 75, 80, 85)),
                                          space_group_symbol="P 1"),
        scatterers=flex.xray_scatterer(
            [xray.scatterer(label="C", site=(0, 0, 0), u=0.25)]))
    negative_gaussian = eltbx.xray_scattering.gaussian((1, 2), (2, 3), -4)
    for i_trial in range(7):
        structure = structure_default.deep_copy_scatterers()
        scatterer = structure.scatterers()[0]
        if (i_trial == 1):
            scatterer.occupancy *= -1
        elif (i_trial == 2):
            structure.scattering_type_registry(
                custom_dict={"C": negative_gaussian})
        elif (i_trial == 3):
            scatterer.u_iso *= -1
        elif (i_trial == 4):
            u_cart = adptbx.random_u_cart(u_scale=1, u_min=-1.1)
            assert max(adptbx.eigenvalues(u_cart)) < 0
            u_star = adptbx.u_cart_as_u_star(structure.unit_cell(), u_cart)
            scatterer.u_star = u_star
            scatterer.flags.set_use_u_aniso_only()
        elif (i_trial == 5):
            scatterer.fp = -10
        elif (i_trial == 6):
            scatterer.fp = -3
        f_direct = structure.structure_factors(d_min=1,
                                               algorithm="direct",
                                               cos_sin_table=False).f_calc()
        f_fft = structure.structure_factors(d_min=1,
                                            algorithm="fft",
                                            quality_factor=1.e8,
                                            wing_cutoff=1.e-10).f_calc()
        if (i_trial == 2):
            assert negative_gaussian.at_d_star_sq(
                f_fft.d_star_sq().data()).all_lt(0)
        if (i_trial in [5, 6]):
            f = structure.scattering_type_registry().gaussian_not_optional(
                scattering_type="C").at_d_star_sq(f_fft.d_star_sq().data())
            if (i_trial == 5):
                assert flex.max(f) + scatterer.fp < 0
            else:
                assert flex.max(f) + scatterer.fp > 0
                assert flex.min(f) + scatterer.fp < 0
        cc = flex.linear_correlation(abs(f_direct).data(),
                                     abs(f_fft).data()).coefficient()
        if (cc < 0.999):
            raise AssertionError("i_trial=%d, correlation=%.6g" %
                                 (i_trial, cc))
        elif (0 or verbose):
            print("correlation=%.6g" % cc)
        #
        # very simple test of gradient calculations with negative parameters
        structure_factor_gradients = \
          cctbx.xray.structure_factors.gradients(
            miller_set=f_direct,
            cos_sin_table=False)
        target_functor = xray.target_functors.intensity_correlation(
            f_obs=abs(f_direct))
        target_result = target_functor(f_fft, True)
        xray.set_scatterer_grad_flags(scatterers=structure.scatterers(),
                                      site=True,
                                      u_iso=True,
                                      u_aniso=True,
                                      occupancy=True,
                                      fp=True,
                                      fdp=True)
        for algorithm in ["direct", "fft"]:
            grads = structure_factor_gradients(
                xray_structure=structure,
                u_iso_refinable_params=None,
                miller_set=f_direct,
                d_target_d_f_calc=target_result.derivatives(),
                n_parameters=structure.n_parameters(),
                algorithm=algorithm).packed()
def exercise(target_functor, data_type, parameter_name, space_group_info,
             anomalous_flag,
             cartesian_flag,
             n_elements=9,
             d_min=2.5,
             shake_sigma=0.25,
             test_hard=True, verbose=0):
  assert data_type == 'F' or data_type == 'F^2'
  if (data_type == 'F^2'
       and not target_functor == xray.unified_least_squares_residual): return
  if (parameter_name != "site" and cartesian_flag == True): return
  if (parameter_name == "fdp" and not anomalous_flag): return
  structure_ideal = random_structure.xray_structure(
    space_group_info,
    elements=(("O","N","C")*(n_elements))[:n_elements],
    volume_per_atom=100,
    random_f_prime_d_min=d_min,
    random_f_double_prime=anomalous_flag,
    use_u_aniso = True,
    use_u_iso = False,
    random_u_cart_scale = 0.3,
    random_u_iso = False,
    random_occupancy=True)
  if(parameter_name in ["u_star", "u_iso"]): shake_sigma = shake_sigma / 2.
  random_structure.random_modify_adp_and_adp_flags(
                             scatterers         = structure_ideal.scatterers(),
                             random_u_iso_scale = 0.3,
                             random_u_iso_min   = 0.0,
                             parameter_name     = parameter_name)
  rnd_f_calc = structure_ideal.structure_factors(
    anomalous_flag=anomalous_flag, d_min=d_min, algorithm="direct").f_calc()
  if data_type == 'F':
    y_obs = abs(rnd_f_calc)
  elif data_type == 'F^2':
    y_obs = rnd_f_calc.norm()
    y_obs.set_observation_type_xray_intensity()
  structure_shake = structure_ideal.random_modify_parameters(
        parameter_name, shake_sigma, vary_z_only=False)
  assert tuple(structure_ideal.special_position_indices()) \
      == tuple(structure_shake.special_position_indices())
  target_ftor = target_functor(y_obs)
  for structure in (structure_ideal, structure_shake)[:]: #SWITCH
    f_calc = y_obs.structure_factors_from_scatterers(
      xray_structure=structure,
      algorithm="direct").f_calc()
    target_result = target_ftor(f_calc, compute_derivatives=True)
    if (structure == structure_ideal):
      assert abs(target_result.target()) < 1.e-5

  gradient_flags=xray.structure_factors.gradient_flags(
     site=(parameter_name=="site" or random.choice((False,True))),
     u_iso=(parameter_name=="u_iso" or random.choice((False,True))),
     u_aniso=(parameter_name=="u_star" or random.choice((False,True))),
     occupancy=(parameter_name=="occupancy" or random.choice((False,True))),
     fp=(parameter_name=="fp" or random.choice((False,True))),
     fdp=(parameter_name=="fdp" or (anomalous_flag
                                    and random.choice((False,True)))))
  xray.set_scatterer_grad_flags(scatterers = structure.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp)
  grad_flags_counts = xray.scatterer_grad_flags_counts(structure.scatterers())
  sf = xray.structure_factors.gradients_direct(
    xray_structure=structure,
    u_iso_refinable_params=None,
    miller_set=y_obs,
    d_target_d_f_calc=target_result.derivatives(),
    n_parameters=0)
  if (parameter_name == "site"):
    d_analytical = sf.d_target_d_site_frac()
    if (cartesian_flag): # average d_analytical or d_numerical, but not both
      structure_ideal.apply_special_position_ops_d_target_d_site(d_analytical)
    if (cartesian_flag):
      d_analytical = sf.d_target_d_site_cart()
    d_numerical = finite_differences_site(
      cartesian_flag, target_ftor, structure)
    if (not cartesian_flag): # aver. d_analytical or d_numerical, but not both
      structure_ideal.apply_special_position_ops_d_target_d_site(d_numerical)
  elif (parameter_name == "u_star" and grad_flags_counts.use_u_aniso > 0):
    d_analytical = sf.d_target_d_u_star()
    d_numerical = finite_differences_u_star(target_ftor, structure)
  else:
   if (parameter_name == "occupancy"):
     d_analytical = sf.d_target_d_occupancy()
   elif (parameter_name == "u_iso" and grad_flags_counts.use_u_iso > 0):
     d_analytical = sf.d_target_d_u_iso()
   elif (parameter_name == "fp"):
     d_analytical = sf.d_target_d_fp()
   elif (parameter_name == "fdp"):
     d_analytical = sf.d_target_d_fdp()
   else:
     raise RuntimeError
   d_numerical = finite_differences_scalar(
     parameter_name, target_ftor, structure)
  linear_regression_test(d_analytical, d_numerical, test_hard,
                           verbose=verbose)
  if (parameter_name == "u_iso" and grad_flags_counts.use_u_iso > 0):
    u_iso_refinable_params = flex.double()
    for scatterer in structure.scatterers():
        scatterer.flags.set_tan_u_iso(True)
        scatterer.flags.set_grad_u_iso(gradient_flags.u_iso)
        param = random.randint(90,120)
        scatterer.flags.param= param
        value = math.tan(scatterer.u_iso*math.pi/adptbx.b_as_u(param)-math.pi/2)
        u_iso_refinable_params.append(value)
    sf = xray.structure_factors.gradients_direct(
      xray_structure=structure,
      u_iso_refinable_params = u_iso_refinable_params,
      miller_set=y_obs,
      d_target_d_f_calc=target_result.derivatives(),
      n_parameters=0)
    d_analytical = sf.d_target_d_u_iso()
    d_numerical = finite_differences_scalar("tan_u_iso",target_ftor, structure)
    linear_regression_test(d_analytical, d_numerical, test_hard,
                           verbose=verbose)
Beispiel #35
0
def get_weight(fmodel=None,
               restraints_manager=None,
               sites=None,
               transformations=None,
               u_iso=None,
               ncs_restraints_group_list=None,
               refine_selection=None,
               minimized_obj=None):
    """
  Calculates weights for refinements by slightly shaking the minimized
  parameters and taking the ratio:
  (restraint manager grad norm / parameters gradient norm)


  When calling this function during refinement macro cycle, the minimized
  object, "minimized_obj" , may contains fmodel, restraints_manager,
  refinement type info (sites, transformations, u_iso) and
  ncs_restraints_group_list.


  Args:
    fmodel : F-model object
    restraints_manager: Restraints manager object
    sites (bool): Refine by sites
    u_iso (bool): Refine using u_iso
    transformations (bool): Refine using transformations
      rotations, translations (matrix objects):
    ncs_restraints_group_list: list of ncs_restraint_group objects
    refine_selection (flex.size_t): selection of all ncs related copies and
      non ncs related parts to be included in selection (to be refined)
    minimized_obj:Minimization object containing all the other
      parameters above

  Returns:
    weight (int):

  Example:
  >>>get_weight(minimized_obj=minimized_obj)

  or

  >>>get_weight(fmodel=fmodel,
                restraints_manager=grm,
                sites=sites,
                transformations=transformations,
                u_iso=u_iso,
                ncs_restraints_group_list=ncs_restraints_group_list,
                refine_selection=refine_selection)
  """
    grm = restraints_manager
    extended_ncs_selection = None
    # extract parameters from minimized_obj
    if minimized_obj:
        mo = minimized_obj
        fmodel = mo.fmodel
        grm = mo.grm
        sites = mo.sites
        transformations = mo.transformations
        u_iso = mo.u_iso
        ncs_restraints_group_list = mo.ncs_restraints_group_list
    # del: consider deleting the code below
    #   if hasattr(mo,'extended_ncs_selection'):
    #     extended_ncs_selection = mo.extended_ncs_selection
    # if not extended_ncs_selection:
    #   extended_ncs_selection = get_extended_ncs_selection(
    #     ncs_restraints_group_list=ncs_restraints_group_list,
    #     refine_selection=refine_selection)

    # make sure sufficient input is provided
    assert bool(fmodel), 'F-model is not provided'
    assert bool(grm), 'F-restraints_manager is not provided'
    assert [sites, transformations,
            u_iso].count(True) == 1, 'Refinement type Error'
    #
    have_transforms = ncs_restraints_group_list != []
    fmdc = fmodel.deep_copy()
    if sites:
        fmdc.xray_structure.shake_sites_in_place(mean_distance=0.3)
    elif u_iso:
        fmdc.xray_structure.shake_adp()
    elif transformations and have_transforms:
        x = concatenate_rot_tran(
            ncs_restraints_group_list=ncs_restraints_group_list)
        x = shake_transformations(x=x,
                                  shake_angles_sigma=0.035,
                                  shake_translation_sigma=0.5)
    fmdc.update_xray_structure(xray_structure=fmdc.xray_structure,
                               update_f_calc=True)
    fmdc.xray_structure.scatterers().flags_set_grads(state=False)
    if sites or transformations:
        xray.set_scatterer_grad_flags(
            scatterers=fmdc.xray_structure.scatterers(), site=True)
        # fmodel gradients
        gxc = flex.vec3_double(
            fmdc.one_time_gradients_wrt_atomic_parameters(site=True).packed())
        # restraints manager, energy sites gradients
        gc = grm.energies_sites(sites_cart=fmdc.xray_structure.sites_cart(),
                                compute_gradients=True).gradients
    elif u_iso:
        # Create energies_site gradient, to create geometry_restraints_manager
        # plain_pair_sym_table needed for the energies_adp_iso
        import mmtbx.refinement.adp_refinement
        temp = mmtbx.refinement.adp_refinement.adp_restraints_master_params
        iso_restraints = temp.extract().iso
        gc = grm.energies_sites(sites_cart=fmdc.xray_structure.sites_cart(),
                                compute_gradients=True).gradients
        xray.set_scatterer_grad_flags(
            scatterers=fmdc.xray_structure.scatterers(), u_iso=True)
        # fmodel gradients
        gxc = fmdc.one_time_gradients_wrt_atomic_parameters(
            u_iso=True).as_double()
        # manager restraints, energy sites gradients
        gc = grm.energies_adp_iso(
            xray_structure=fmdc.xray_structure,
            parameters=iso_restraints,
            use_u_local_only=iso_restraints.use_u_local_only,
            use_hd=False,
            compute_gradients=True).gradients
    if transformations and have_transforms:
        # Apply NCS relations to gradients
        gxc = compute_transform_grad(
            grad_wrt_xyz=gxc.as_double(),
            ncs_restraints_group_list=ncs_restraints_group_list,
            xyz_asu=fmdc.xray_structure.sites_cart(),
            x=x)
        gc = compute_transform_grad(
            grad_wrt_xyz=gc.as_double(),
            ncs_restraints_group_list=ncs_restraints_group_list,
            xyz_asu=fmdc.xray_structure.sites_cart(),
            x=x)

    weight = 1.
    gc_norm = gc.norm()
    gxc_norm = gxc.norm()
    if (gxc_norm != 0.0):
        weight = gc_norm / gxc_norm

    weight = min(weight, 1e6)  # limit the weight max value
    return weight
def exercise(target_functor, data_type, space_group_info, anomalous_flag,
             gradient_flags, occupancy_penalty,
             n_elements=9, d_min=None, shake_sigma=0.1,
             verbose=0,tan_u_iso=False, param = 0):
  assert data_type == 'F' or data_type == 'F^2'
  if (data_type == 'F^2'
      and not target_functor == xray.unified_least_squares_residual): return
  structure_ideal = random_structure.xray_structure(
    space_group_info,
    elements=(("O","N","C")*(n_elements))[:n_elements],#("Se",)*n_elements,
    volume_per_atom=200,
    random_u_iso=True,
    random_u_cart_scale=.3,
    random_occupancy=True,
    use_u_aniso = True)
  random_structure.random_modify_adp_and_adp_flags(
    scatterers         = structure_ideal.scatterers(),
    random_u_iso_scale = 0.3,
    random_u_iso_min   = 0.0)
  xray.set_scatterer_grad_flags(scatterers = structure_ideal.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp,
                                tan_u_iso  = tan_u_iso,
                                param      = param)
  if(0):
    print
    for sc in structure_ideal.scatterers():
      print sc.flags.use_u_iso(),sc.flags.grad_u_iso(),sc.flags.use_u_aniso(),\
            sc.flags.grad_u_aniso(),sc.u_iso, sc.u_star,sc.flags.tan_u_iso(),\
            sc.flags.param, sc.occupancy
  rnd_f_calc = structure_ideal.structure_factors(
    anomalous_flag=anomalous_flag,
    d_min=d_min,
    algorithm="direct",
    cos_sin_table=True).f_calc()
  if data_type == "F":
    y_obs = abs(rnd_f_calc)
  elif data_type == "F^2":
    y_obs = rnd_f_calc.norm()
    y_obs.set_observation_type_xray_intensity()
  else:
    raise "Error: invalid data type: %s" % data_type
  if (0 or verbose):
    print "structure_ideal:"
    structure_ideal.show_summary().show_scatterers()
    print "n_special_positions:", \
          structure_ideal.special_position_indices().size()
    print
  structure_ideal_cp = structure_ideal.deep_copy_scatterers()
  structure_shake = structure_ideal
  if (gradient_flags.site):
    structure_shake = structure_shake.random_modify_parameters(
      "site", shake_sigma)
  if (gradient_flags.occupancy):
    structure_shake = structure_shake.random_modify_parameters(
      "occupancy", shake_sigma)
    if (occupancy_penalty is not None):
      structure_shake.scatterers()[-1].occupancy = 0
  if (gradient_flags.u_aniso):
    shift_u_aniso(structure_shake, 0.001)
  if (gradient_flags.u_iso):
    shift_u_iso(structure_shake, 0.1)
  assert tuple(structure_ideal.special_position_indices()) \
         == tuple(structure_shake.special_position_indices())
  if (0 or verbose):
    print "structure_shake:"
    structure_shake.show_summary().show_scatterers()
    print
  for i_trial in xrange(10):
    try:
      minimizer = xray.minimization.lbfgs(
        target_functor=target_functor(y_obs),
        xray_structure=structure_shake,
        occupancy_penalty=occupancy_penalty,
        structure_factor_algorithm="direct")
    except RuntimeError, e:
      if (str(e).find("debye_waller_factor_exp: arg_limit exceeded") < 0):
        raise
    else:
      break
Beispiel #37
0
def exercise(target_functor, data_type, space_group_info, anomalous_flag,
             gradient_flags, occupancy_penalty,
             n_elements=9, d_min=None, shake_sigma=0.1,
             verbose=0,tan_u_iso=False, param = 0):
  assert data_type == 'F' or data_type == 'F^2'
  if (data_type == 'F^2'
      and not target_functor == xray.unified_least_squares_residual): return
  structure_ideal = random_structure.xray_structure(
    space_group_info,
    elements=(("O","N","C")*(n_elements))[:n_elements],#("Se",)*n_elements,
    volume_per_atom=200,
    random_u_iso=True,
    random_u_cart_scale=.3,
    random_occupancy=True,
    use_u_aniso = True)
  random_structure.random_modify_adp_and_adp_flags(
    scatterers         = structure_ideal.scatterers(),
    random_u_iso_scale = 0.3,
    random_u_iso_min   = 0.0)
  xray.set_scatterer_grad_flags(scatterers = structure_ideal.scatterers(),
                                site       = gradient_flags.site,
                                u_iso      = gradient_flags.u_iso,
                                u_aniso    = gradient_flags.u_aniso,
                                occupancy  = gradient_flags.occupancy,
                                fp         = gradient_flags.fp,
                                fdp        = gradient_flags.fdp,
                                tan_u_iso  = tan_u_iso,
                                param      = param)
  if(0):
    print()
    for sc in structure_ideal.scatterers():
      print(sc.flags.use_u_iso(),sc.flags.grad_u_iso(),sc.flags.use_u_aniso(),\
            sc.flags.grad_u_aniso(),sc.u_iso, sc.u_star,sc.flags.tan_u_iso(),\
            sc.flags.param, sc.occupancy)
  rnd_f_calc = structure_ideal.structure_factors(
    anomalous_flag=anomalous_flag,
    d_min=d_min,
    algorithm="direct",
    cos_sin_table=True).f_calc()
  if data_type == "F":
    y_obs = abs(rnd_f_calc)
  elif data_type == "F^2":
    y_obs = rnd_f_calc.norm()
    y_obs.set_observation_type_xray_intensity()
  else:
    raise "Error: invalid data type: %s" % data_type
  if (0 or verbose):
    print("structure_ideal:")
    structure_ideal.show_summary().show_scatterers()
    print("n_special_positions:", \
          structure_ideal.special_position_indices().size())
    print()
  structure_ideal_cp = structure_ideal.deep_copy_scatterers()
  structure_shake = structure_ideal
  if (gradient_flags.site):
    structure_shake = structure_shake.random_modify_parameters(
      "site", shake_sigma)
  if (gradient_flags.occupancy):
    structure_shake = structure_shake.random_modify_parameters(
      "occupancy", shake_sigma)
    if (occupancy_penalty is not None):
      structure_shake.scatterers()[-1].occupancy = 0
  if (gradient_flags.u_aniso):
    shift_u_aniso(structure_shake, 0.001)
  if (gradient_flags.u_iso):
    shift_u_iso(structure_shake, 0.1)
  assert tuple(structure_ideal.special_position_indices()) \
         == tuple(structure_shake.special_position_indices())
  if (0 or verbose):
    print("structure_shake:")
    structure_shake.show_summary().show_scatterers()
    print()
  for i_trial in range(10):
    try:
      minimizer = xray.minimization.lbfgs(
        target_functor=target_functor(y_obs),
        xray_structure=structure_shake,
        occupancy_penalty=occupancy_penalty,
        structure_factor_algorithm="direct")
    except RuntimeError as e:
      if (str(e).find("debye_waller_factor_exp: arg_limit exceeded") < 0):
        raise
    else:
      break
  else:
    raise RuntimeError("Too many xray.minimization.lbfgs failures.")
  if (0 or verbose):
    print("first:", minimizer.first_target_value)
    print("final:", minimizer.final_target_value)
    print()
  assert minimizer.final_target_value < minimizer.first_target_value
  if (0 or verbose):
    print("minimized structure_shake:")
    structure_shake.show_summary().show_scatterers()
    print()
  f_final = y_obs.structure_factors_from_scatterers(
    xray_structure=structure_shake,
    algorithm="direct",
    cos_sin_table=True).f_calc()
  if data_type == 'F':
    f_final = abs(f_final)
  elif data_type == 'F^2':
    f_final = f_final.norm()
  c = flex.linear_correlation(y_obs.data(), f_final.data())
  assert c.is_well_defined()
  if (0 or verbose):
    label = gradient_flags.string_of_true()
    if (anomalous_flag):
      label += ",anomalous"
    print("correlation: %10.8f" % c.coefficient(), label)
    print()
  c_coefficient = c.coefficient()
  if(c_coefficient <= 0.999):
    print(c_coefficient)
  if data_type == 'F':
    assert c_coefficient > 0.999
  elif data_type == 'F^2':
    assert c_coefficient > 0.9