'y_noise_std': [0.1],
        },
    }

    simulators_params = {'LinearStudentT': {'ndim_x': [10]}}

    observations = 100 * np.logspace(2, 6, num=8, base=2.0, dtype=np.int32)

    return estimator_params, simulators_params, observations


if __name__ == '__main__':
    estimator_params, simulators_params, observations = question4()
    load = base_experiment.launch_experiment(estimator_params,
                                             simulators_params,
                                             observations,
                                             EXP_PREFIX,
                                             n_mc_samples=N_MC_SAMPLES,
                                             tail_measures=False)

    if load:
        logger.configure(config.DATA_DIR, EXP_PREFIX)

        results_from_pkl_file = dict(logger.load_pkl_log(RESULTS_FILE))
        gof_result = GoodnessOfFitResults(
            single_results_dict=results_from_pkl_file)
        results_df = gof_result.generate_results_dataframe(
            base_experiment.KEYS_OF_INTEREST)

        gof_result = ConfigRunner.load_dumped_estimators(gof_result)
    simulators_params = {
        'EconDensity': {
            'std': [1],
            'heteroscedastic': [True],
        },
        'GaussianMixture': {
            'n_kernels': [10],
            'ndim_x': [1],
            'ndim_y': [1],
            'means_std': [1.5]
        },
        'ArmaJump': {
            'c': [0.1],
            'arma_a1': [0.9],
            'std': [0.05],
            'jump_prob': [0.05],
        },
        'SkewNormal': {}
    }

    observations = 100 * np.logspace(0, 6, num=7, base=2.0, dtype=np.int32)

    return estimator_params, simulators_params, observations


if __name__ == '__main__':
    estimator_params, simulators_params, observations = question1()
    load = base_experiment.launch_experiment(estimator_params,
                                             simulators_params, observations,
                                             EXP_PREFIX)