Beispiel #1
0
def test_weights():
    sparse_X = 1
    X, y = build_dataset(n_samples=30, n_features=50, sparse_X=sparse_X)

    np.random.seed(0)
    weights = np.abs(np.random.randn(X.shape[1]))

    tol = 1e-14
    params = {'n_alphas': 10, 'tol': tol}
    alphas1, coefs1, gaps1 = celer_path(X,
                                        y,
                                        "lasso",
                                        weights=weights,
                                        verbose=1,
                                        **params)

    alphas2, coefs2, gaps2 = celer_path(X / weights[None, :], y, "lasso",
                                        **params)

    assert_allclose(alphas1, alphas2)
    assert_allclose(coefs1, coefs2 / weights[:, None], atol=1e-4, rtol=1e-3)
    assert_array_less(gaps1, tol * norm(y)**2 / len(y))
    assert_array_less(gaps2, tol * norm(y)**2 / len(y))

    alpha = 0.001
    clf1 = Lasso(alpha=alpha, weights=weights, fit_intercept=False).fit(X, y)
    clf2 = Lasso(alpha=alpha, fit_intercept=False).fit(X / weights, y)

    assert_allclose(clf1.coef_, clf2.coef_ / weights)

    # weights must be > 0
    clf1.weights[0] = 0.
    np.testing.assert_raises(ValueError, clf1.fit, X=X, y=y)
Beispiel #2
0
def test_convergence_warning():
    X, y = build_dataset(n_samples=10, n_features=10)
    tol = -1  # gap canot be negative, a covnergence warning should be raised
    alpha_max = np.max(np.abs(X.T.dot(y))) / X.shape[0]
    clf = Lasso(alpha_max / 10, max_iter=1, max_epochs=100, tol=tol)

    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        clf.fit(X, y)
        assert len(w) == 1
        assert issubclass(w[-1].category, ConvergenceWarning)
Beispiel #3
0
def test_dropin_lasso(sparse_X):
    """Test that our Lasso class behaves as sklearn's Lasso."""
    X, y, _, _ = build_dataset(n_samples=20, n_features=30, sparse_X=sparse_X)

    alpha_max = np.linalg.norm(X.T.dot(y), ord=np.inf) / X.shape[0]
    alpha = alpha_max / 2.
    clf = Lasso(alpha=alpha)
    clf.fit(X, y)

    clf2 = sklearn_Lasso(alpha=alpha)
    clf2.fit(X, y)
    np.testing.assert_allclose(clf.coef_, clf2.coef_, rtol=1e-5)

    check_estimator(Lasso)
Beispiel #4
0
def test_dropin_lasso(sparse_X, fit_intercept):
    """Test that our Lasso class behaves as sklearn's Lasso."""
    X, y, _, _ = build_dataset(n_samples=20, n_features=30, sparse_X=sparse_X)

    alpha_max = np.linalg.norm(X.T.dot(y), ord=np.inf) / X.shape[0]
    alpha = alpha_max / 2.
    params = dict(alpha=alpha,
                  fit_intercept=fit_intercept,
                  tol=1e-10,
                  normalize=True)
    clf = Lasso(**params)
    clf.fit(X, y)

    clf2 = sklearn_Lasso(**params)
    clf2.fit(X, y)
    np.testing.assert_allclose(clf.coef_, clf2.coef_, rtol=1e-5)
    if fit_intercept:
        np.testing.assert_allclose(clf.intercept_, clf2.intercept_)

    check_estimator(Lasso)
Beispiel #5
0
def test_zero_iter():
    X, y = build_dataset(n_samples=30, n_features=50)

    # convergence warning is raised bc we return -1 as gap
    with warnings.catch_warnings(record=True):
        assert_allclose(Lasso(max_iter=0).fit(X, y).coef_, 0)
        y = 2 * (y > 0) - 1
        assert_allclose(
            LogisticRegression(max_iter=0, solver="celer-pn").fit(X, y).coef_,
            0)
        assert_allclose(
            LogisticRegression(max_iter=0, solver="celer").fit(X, y).coef_, 0)
Beispiel #6
0
def test_Lasso(sparse_X, fit_intercept, positive):
    """Test that our Lasso class behaves as sklearn's Lasso."""
    X, y = build_dataset(n_samples=20, n_features=30, sparse_X=sparse_X)
    if not positive:
        alpha_max = norm(X.T.dot(y), ord=np.inf) / X.shape[0]
    else:
        alpha_max = X.T.dot(y).max() / X.shape[0]

    alpha = alpha_max / 2.
    params = dict(alpha=alpha,
                  fit_intercept=fit_intercept,
                  tol=1e-10,
                  positive=positive)
    clf = Lasso(**params)
    clf.fit(X, y)

    clf2 = sklearn_Lasso(**params)
    clf2.fit(X, y)
    assert_allclose(clf.coef_, clf2.coef_, rtol=1e-5)
    if fit_intercept:
        assert_allclose(clf.intercept_, clf2.intercept_)
Beispiel #7
0
def test_warm_start():
    """Test Lasso path convergence."""
    X, y = build_dataset(n_samples=100, n_features=100, sparse_X=True)
    n_samples, n_features = X.shape
    alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples
    n_alphas = 10
    alphas = alpha_max * np.logspace(0, -2, n_alphas)

    reg1 = Lasso(tol=1e-6, warm_start=True, p0=10)
    reg1.coef_ = np.zeros(n_features)

    for alpha in alphas:
        reg1.set_params(alpha=alpha)
        reg1.fit(X, y)
        # refitting with warm start should take less than 2 iters:
        reg1.fit(X, y)
        # hack because assert_array_less does strict comparison...
        np.testing.assert_array_less(reg1.n_iter_, 2.01)