Beispiel #1
0
def parallel_function(
        dataset_name, method, tol=1e-5, n_outer=50,
        tolerance_decrease='constant'):

    # load data
    X, y = fetch_libsvm(dataset_name)
    y -= y.mean()
    # compute alpha_max
    alpha_max = np.abs(X.T @ y).max() / len(y)

    if model_name == "logreg":
        alpha_max /= 2
    alpha_min = alpha_max / 10_000

    if model_name == "lasso":
        estimator = celer.Lasso(
            fit_intercept=False, max_iter=100, warm_start=True, tol=tol)
        model = Lasso(estimator=estimator)
    elif model_name == "logreg":
        model = SparseLogreg(estimator=estimator)

    # TODO improve this
    try:
        n_outer = dict_n_outers[dataset_name, method]
    except Exception:
        n_outer = 20

    size_loop = 2

    for _ in range(size_loop):
        if model_name == "lasso":
            sub_criterion = HeldOutMSE(None, None)
        elif model_name == "logreg":
            criterion = HeldOutLogistic(None, None)
        kf = KFold(n_splits=5, shuffle=True, random_state=42)
        criterion = CrossVal(sub_criterion, cv=kf)

        algo = ImplicitForward(tol_jac=1e-3)
        monitor = Monitor()
        t_max = dict_t_max[dataset_name]
        if method == 'grid_search':
            grid_search(
                algo, criterion, model, X, y, alpha_min, alpha_max,
                monitor, max_evals=100, tol=tol)
        elif method == 'random' or method == 'bayesian':
            hyperopt_wrapper(
                algo, criterion, model, X, y, alpha_min, alpha_max,
                monitor, max_evals=30, tol=tol, method=method, size_space=1,
                t_max=t_max)
        elif method.startswith("implicit_forward"):
            # do gradient descent to find the optimal lambda
            alpha0 = alpha_max / 100
            n_outer = 30
            if method == 'implicit_forward':
                optimizer = GradientDescent(
                    n_outer=n_outer, p_grad_norm=1, verbose=True, tol=tol,
                    t_max=t_max)
            else:
                optimizer = GradientDescent(
                    n_outer=n_outer, p_grad_norm=1, verbose=True, tol=tol,
                    t_max=t_max,
                    tol_decrease="geom")
            grad_search(
                algo, criterion, model, optimizer, X, y, alpha0,
                monitor)
        else:
            raise NotImplementedError

    monitor.times = np.array(monitor.times)
    monitor.objs = np.array(monitor.objs)
    monitor.objs_test = 0  # TODO
    monitor.alphas = np.array(monitor.alphas)
    return (dataset_name, method, tol, n_outer, tolerance_decrease,
            monitor.times, monitor.objs, monitor.objs_test,
            monitor.alphas, alpha_max,
            model_name)
Beispiel #2
0
tab = np.linspace(1, 1000, n_features)
dict_log_alpha["wLasso"] = log_alpha + np.log(tab / tab.max())
dict_log_alpha["logreg"] = (log_alpha - np.log(2))
dict_log_alpha["svm"] = 1e-4
dict_log_alpha["svr"] = np.array([1e-2, 1e-2])
# Set models to be tested
models = {}
models["lasso"] = Lasso(estimator=None)
models["enet"] = ElasticNet(estimator=None)
models["wLasso"] = WeightedLasso(estimator=None)
models["logreg"] = SparseLogreg(estimator=None)
models["svm"] = SVM(estimator=None)
models["svr"] = SVR(estimator=None)

custom_models = {}
custom_models["lasso"] = Lasso(estimator=celer.Lasso(
    warm_start=True, fit_intercept=False))
custom_models["enet"] = ElasticNet(
    estimator=linear_model.ElasticNet(warm_start=True, fit_intercept=False))
custom_models["logreg"] = SparseLogreg(
    estimator=celer.LogisticRegression(warm_start=True, fit_intercept=False))

# Compute "ground truth" with cvxpylayer
dict_cvxpy_func = {
    'lasso': lasso_cvxpy,
    'enet': enet_cvxpy,
    'wLasso': weighted_lasso_cvxpy,
    'logreg': logreg_cvxpy,
    'svm': svm_cvxpy,
    'svr': svr_cvxpy
    }
Beispiel #3
0
kf = KFold(n_splits=5, shuffle=True, random_state=42)

n_samples = len(y)
alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples

tol = 1e-8
max_iter = 1e5

algorithms = ['grid_search10', 'grad_search', 'random', 'bayesian']

p_alpha_min = 1 / 10_000
print("Starting path computation...")
for algorithm in algorithms:
    estimator = celer.Lasso(fit_intercept=False,
                            max_iter=1000,
                            warm_start=True,
                            tol=tol)

    print('%s started' % algorithm)

    model = Lasso(estimator=estimator)
    criterion = HeldOutMSE(None, None)
    log_alpha0 = np.log(alpha_max / 10)
    monitor = Monitor()
    cross_val_criterion = CrossVal(criterion, cv=kf)
    algo = ImplicitForward()
    optimizer = GradientDescent(n_outer=10, tol=tol, verbose=True, p_grad0=1)
    # optimizer = LineSearch(n_outer=10, tol=tol, verbose=True)
    if algorithm == 'grad_search':
        grad_search(algo, cross_val_criterion, model, optimizer, X, y,
                    log_alpha0, monitor)
Beispiel #4
0
print("Starting path computation...")
n_samples = len(y[idx_train])
alpha_max = np.max(np.abs(X[idx_train, :].T.dot(y[idx_train])))
alpha_max /= len(idx_train)
alpha0 = alpha_max / 5

n_alphas = 10
alphas = np.geomspace(alpha_max, alpha_max / 1_000, n_alphas)
tol = 1e-7

##############################################################################
# Grid search with scikit-learn
# -----------------------------

estimator = celer.Lasso(fit_intercept=False, warm_start=True)

print('Grid search started')

t0 = time.time()
model = Lasso(estimator=estimator)
criterion = HeldOutMSE(idx_train, idx_val)
monitor_grid_sk = Monitor()
grid_search(criterion,
            model,
            X,
            y,
            None,
            None,
            monitor_grid_sk,
            alphas=alphas,
Beispiel #5
0
alphas = alpha_max * np.geomspace(1, 0.1)
alpha_min = 0.0001 * alpha_max

estimator = linear_model.Lasso(fit_intercept=False,
                               max_iter=10000,
                               warm_start=True)
model = Lasso(estimator=estimator)

tol = 1e-8

# Set models to be tested
models = {}
models["lasso"] = Lasso(estimator=None)

models["lasso_custom"] = Lasso(
    estimator=celer.Lasso(warm_start=True, fit_intercept=False))


@pytest.mark.parametrize('model_name', list(models.keys()))
@pytest.mark.parametrize('XX', [X, X_s])
def test_cross_val_criterion(model_name, XX):
    model = models[model_name]
    alpha_min = alpha_max / 10
    max_iter = 10000
    n_alphas = 10
    kf = KFold(n_splits=5, shuffle=True, random_state=56)

    monitor_grid = Monitor()
    if model_name.startswith("lasso"):
        sub_crit = HeldOutMSE(None, None)
    else: