def main():

    # init
    assay = __ASSAY__
    steps = __STEPS__
    conda = __CONDA__
    app = 'celescope'

    # parser
    parser = multi_opts(assay)
    parser.add_argument('--starMem', help='starMem', default=30)
    parser.add_argument('--genomeDir', help='genome index dir', required=True)
    parser.add_argument(
        '--gtf_type',
        help='Specify attribute type in GTF annotation, default=exon',
        default='exon')
    parser.add_argument('--thread', help='thread', default=6)
    parser.add_argument('--probe_file', help="probe fasta file")
    args = parser.parse_args()

    # read args
    outdir = args.outdir
    chemistry = args.chemistry
    pattern = args.pattern
    whitelist = args.whitelist
    linker = args.linker
    lowQual = args.lowQual
    lowNum = args.lowNum
    mod = args.mod
    rm_files = args.rm_files

    # parse mapfile
    fq_dict, match_dict = parse_map_col4(args.mapfile, None)

    # link
    link_data(outdir, fq_dict)

    # custom args
    thread = args.thread
    genomeDir = args.genomeDir
    starMem = args.starMem
    gtf_type = args.gtf_type
    probe_file = args.probe_file

    # mk log dir
    logdir = outdir + '/log'
    os.system('mkdir -p %s' % (logdir))

    # script init
    sjm_cmd = 'log_dir %s\n' % (logdir)
    sjm_order = ''
    shell_dict = defaultdict(str)

    # outdir dict
    for sample in fq_dict:
        outdir_dic = {}
        index = 0
        for step in steps:
            step_outdir = f"{outdir}/{sample}/{index:02d}.{step}"
            outdir_dic.update({step: step_outdir})
            index += 1

        # sample
        step = "sample"
        cmd = (
            f'{app} {assay} {step} '
            f'--chemistry {chemistry} '
            f'--sample {sample} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda)
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # barcode
        arr = fq_dict[sample]
        step = "barcode"
        cmd = (
            f'{app} {assay} {step} '
            f'--fq1 {arr[0]} --fq2 {arr[1]} --chemistry {chemistry} '
            f'--pattern {pattern} --whitelist {whitelist} --linker {linker} '
            f'--sample {sample} --lowQual {lowQual} --thread {thread} '
            f'--lowNum {lowNum} --outdir {outdir_dic[step]} --assay {assay} '
            f'--probe_file {probe_file} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # adapt
        step = "cutadapt"
        fq = f'{outdir_dic["barcode"]}/{sample}_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} --outdir '
               f'{outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # STAR
        step = 'STAR'
        fq = f'{outdir_dic["cutadapt"]}/{sample}_clean_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} '
               f'--genomeDir {genomeDir} --thread {thread} '
               f'--outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd,
                                f'{step}_{sample}',
                                conda,
                                m=starMem,
                                x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # featureCounts
        step = 'featureCounts'
        input = f'{outdir_dic["STAR"]}/{sample}_Aligned.sortedByCoord.out.bam'
        cmd = (
            f'{app} {assay} {step} '
            f'--input {input} --gtf_type {gtf_type} '
            f'--sample {sample} --thread {thread} --outdir {outdir_dic[step]} '
            f'--genomeDir {genomeDir} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=8, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # count
        step = 'count_capture_rna'
        bam = f'{outdir_dic["featureCounts"]}/{sample}_name_sorted.bam'
        cmd = (f'{app} {assay} {step} '
               f'--bam {bam} --sample {sample} --cells auto '
               f'--outdir {outdir_dic[step]} --assay {assay} '
               f'--match_dir {match_dict[sample]} '
               f'--genomeDir {genomeDir}')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=8, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # analysis
        step = 'analysis'
        matrix_file = f'{outdir_dic["count_capture_rna"]}/{sample}_matrix.tsv.gz'
        cmd = (f'{app} {assay} {step} '
               f'--matrix_file {matrix_file} --sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=15, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

    # merged report
    if mod == 'sjm':
        step = 'merge_report'
        merge_report(
            fq_dict,
            steps,
            last_step,
            sjm_cmd,
            sjm_order,
            logdir,
            conda,
            outdir,
            rm_files,
        )
    if mod == 'shell':
        os.system('mkdir -p ./shell/')
        for sample in shell_dict:
            with open(f'./shell/{sample}.sh', 'w') as f:
                f.write(shell_dict[sample])
Beispiel #2
0
def main():

    # init
    assay = __ASSAY__
    steps = __STEPS__
    conda = __CONDA__
    app = 'celescope'

    # parser
    parser = multi_opts(assay)
    parser.add_argument('--starMem', help='starMem', default=10)
    parser.add_argument('--thread', help='thread', default=6)
    parser.add_argument('--genomeDir', help='fusion genomeDir', required=True)
    parser.add_argument(
        "--fusion_pos",
        help="first base position of the second gene(0-start),tsv file",
        required=True)
    parser.add_argument("--UMI_min", default=1)
    args = parser.parse_args()

    # read args
    outdir = args.outdir
    chemistry = args.chemistry
    pattern = args.pattern
    whitelist = args.whitelist
    linker = args.linker
    lowQual = args.lowQual
    lowNum = args.lowNum
    mod = args.mod
    rm_files = args.rm_files

    # parse mapfile
    fq_dict, match_dict = parse_map_col4(args.mapfile, None)

    # link
    link_data(outdir, fq_dict)

    # custom args
    thread = args.thread
    genomeDir = args.genomeDir
    starMem = args.starMem
    fusion_pos = args.fusion_pos
    UMI_min = args.UMI_min

    # mk log dir
    logdir = outdir + '/log'
    os.system('mkdir -p %s' % (logdir))

    # script init
    sjm_cmd = 'log_dir %s\n' % (logdir)
    sjm_order = ''
    shell_dict = defaultdict(str)

    # outdir dict
    for sample in fq_dict:
        outdir_dic = {}
        index = 0
        for step in steps:
            step_outdir = f"{outdir}/{sample}/{index:02d}.{step}"
            outdir_dic.update({step: step_outdir})
            index += 1

        # sample
        step = "sample"
        cmd = (
            f'{app} {assay} {step} '
            f'--chemistry {chemistry} '
            f'--sample {sample} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda)
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # barcode
        arr = fq_dict[sample]
        step = "barcode"
        cmd = (
            f'{app} {assay} {step} '
            f'--fq1 {arr[0]} --fq2 {arr[1]} --chemistry {chemistry} '
            f'--pattern {pattern} --whitelist {whitelist} --linker {linker} '
            f'--sample {sample} --lowQual {lowQual} --thread {thread} '
            f'--lowNum {lowNum} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # adapt
        step = "cutadapt"
        fq = f'{outdir_dic["barcode"]}/{sample}_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} --outdir '
               f'{outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # STAR_fusion
        step = 'STAR_fusion'
        input_read = f'{outdir_dic["cutadapt"]}/{sample}_clean_2.fq.gz'
        cmd = (
            f'{app} {assay} {step} '
            f'--outdir {outdir_dic[step]} --assay {assay} --sample {sample} '
            f'--thread {thread} '
            f'--input_read {input_read} '
            f'--genomeDir {genomeDir} ')
        sjm_cmd += generate_sjm(cmd,
                                f'{step}_{sample}',
                                conda,
                                m=starMem,
                                x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # count_fusion
        step = 'count_fusion'
        bam = f'{outdir_dic["STAR_fusion"]}/{sample}_Aligned.sortedByCoord.out.bam'
        cmd = (
            f'{app} {assay} {step} '
            f'--outdir {outdir_dic[step]} --assay {assay} --sample {sample} '
            f'--bam {bam} '
            f'--UMI_min {UMI_min} '
            f'--match_dir {match_dict[sample]} '
            f'--fusion_pos {fusion_pos} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=20, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        last_step = step

    # merged report
    if mod == 'sjm':
        step = 'merge_report'
        merge_report(
            fq_dict,
            steps,
            last_step,
            sjm_cmd,
            sjm_order,
            logdir,
            conda,
            outdir,
            rm_files,
        )
    if mod == 'shell':
        os.system('mkdir -p ./shell/')
        for sample in shell_dict:
            with open(f'./shell/{sample}.sh', 'w') as f:
                f.write(shell_dict[sample])
Beispiel #3
0
def main():

    # init
    assay = __ASSAY__
    steps = __STEPS__
    conda = __CONDA__
    app = 'celescope'

    # parser
    parser = multi_opts(assay)
    parser.add_argument('--thread', help='thread', default=6)
    parser.add_argument("--fq_pattern",
                        help="tag read2 pattern",
                        required=True)
    parser.add_argument("--linker_fasta", help="linker fasta")
    parser.add_argument("--barcode_fasta", help="barcode fasta", required=True)
    args = parser.parse_args()

    # read args
    outdir = args.outdir
    chemistry = args.chemistry
    pattern = args.pattern
    whitelist = args.whitelist
    linker = args.linker
    lowQual = args.lowQual
    lowNum = args.lowNum
    mod = args.mod
    rm_files = args.rm_files
    minimum_length = args.minimum_length

    # parse mapfile
    fq_dict, match_dict = parse_map_col4(args.mapfile, None)

    # link
    link_data(outdir, fq_dict)

    # custom args
    thread = args.thread
    fq_pattern = args.fq_pattern
    linker_fasta = args.linker_fasta
    barcode_fasta = args.barcode_fasta

    # mk log dir
    logdir = outdir + '/log'
    os.system('mkdir -p %s' % (logdir))

    # script init
    sjm_cmd = 'log_dir %s\n' % (logdir)
    sjm_order = ''
    shell_dict = defaultdict(str)

    # run
    for sample in fq_dict:
        outdir_dic = {}
        index = 0
        for step in steps:
            step_outdir = f"{outdir}/{sample}/{index:02d}.{step}"
            outdir_dic.update({step: step_outdir})
            index += 1

        # sample
        step = "sample"
        cmd = (
            f'{app} {assay} {step} '
            f'--chemistry {chemistry} '
            f'--sample {sample} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda)
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # barcode
        arr = fq_dict[sample]
        step = "barcode"
        cmd = (
            f'{app} {assay} {step} '
            f'--fq1 {arr[0]} --fq2 {arr[1]} --chemistry {chemistry} '
            f'--pattern {pattern} --whitelist {whitelist} --linker {linker} '
            f'--sample {sample} --lowQual {lowQual} --thread {thread} '
            f'--lowNum {lowNum} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # adapt
        step = "cutadapt"
        fq = f'{outdir_dic["barcode"]}/{sample}_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} --outdir '
               f'{outdir_dic[step]} --assay {assay} '
               f'--minimum_length {minimum_length} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        # mapping_tag
        step = 'mapping_tag'
        fq = f'{outdir_dic["cutadapt"]}/{sample}_clean_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--fq {fq} '
               f'--fq_pattern {fq_pattern} '
               f'--barcode_fasta {barcode_fasta} '
               f'--linker_fasta {linker_fasta} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        step = 'count_cite'
        read_count_file = f'{outdir_dic["mapping_tag"]}/{sample}_read_count.tsv'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--match_dir {match_dict[sample]} '
               f'--read_count_file {read_count_file} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

        step = 'analysis_cite'
        citeseq_mtx = f'{outdir_dic["count_cite"]}/{sample}_citeseq.mtx.gz'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--match_dir {match_dict[sample]} '
               f'--citeseq_mtx {citeseq_mtx} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell_dict[sample] += cmd + '\n'
        last_step = step

    # merged report
    if mod == 'sjm':
        step = 'merge_report'
        merge_report(
            fq_dict,
            steps,
            last_step,
            sjm_cmd,
            sjm_order,
            logdir,
            conda,
            outdir,
            rm_files,
        )
    if mod == 'shell':
        os.system('mkdir -p ./shell/')
        for sample in shell_dict:
            with open(f'./shell/{sample}.sh', 'w') as f:
                f.write(shell_dict[sample])
Beispiel #4
0
def main():

    # init
    assay = __ASSAY__
    steps = __STEPS__
    conda = __CONDA__
    app = 'celescope'

    # parser
    parser = multi_opts(assay)
    parser.add_argument('--thread', help='thread', default=6)
    parser.add_argument(
        "--UMI_min",
        help="cells have SMK_UMI>=UMI_min are considered as valid cell",
        default="auto")
    parser.add_argument("--dim", help="SMK tag dimension", default=1)
    parser.add_argument("--SNR_min",
                        help="minimum signal to noise ratio",
                        default="auto")
    parser.add_argument("--SMK_pattern", help="SMK read2 pattern")
    parser.add_argument("--SMK_linker", help="SMK read2 linker fasta path")
    parser.add_argument("--SMK_barcode", help="SMK read2 barcode fasta path ")
    args = parser.parse_args()

    # read args
    outdir = args.outdir
    chemistry = args.chemistry
    pattern = args.pattern
    whitelist = args.whitelist
    linker = args.linker
    lowQual = args.lowQual
    lowNum = args.lowNum
    mod = args.mod
    rm_files = args.rm_files

    # parse mapfile
    fq_dict, match_dict = parse_map_col4(args.mapfile, "auto")

    # link
    link_data(outdir, fq_dict)

    # custom args
    thread = args.thread
    UMI_min = args.UMI_min
    dim = args.dim
    SNR_min = args.SNR_min
    SMK_pattern = args.SMK_pattern
    SMK_linker = args.SMK_linker
    SMK_barcode = args.SMK_barcode

    # mk log dir
    logdir = outdir + '/log'
    os.system('mkdir -p %s' % (logdir))

    # script init
    sjm_cmd = 'log_dir %s\n' % (logdir)
    sjm_order = ''
    shell = ''

    # run
    for sample in fq_dict:
        outdir_dic = {}
        index = 0
        for step in steps:
            step_outdir = f"{outdir}/{sample}/{index:02d}.{step}"
            outdir_dic.update({step: step_outdir})
            index += 1

        # sample
        step = "sample"
        cmd = (
            f'{app} {assay} {step} '
            f'--chemistry {chemistry} '
            f'--sample {sample} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda)
        shell += cmd + '\n'
        last_step = step

        # barcode
        arr = fq_dict[sample]
        step = "barcode"
        cmd = (
            f'{app} {assay} {step} '
            f'--fq1 {arr[0]} --fq2 {arr[1]} --chemistry {chemistry} '
            f'--pattern {pattern} --whitelist {whitelist} --linker {linker} '
            f'--sample {sample} --lowQual {lowQual} --thread {thread} '
            f'--lowNum {lowNum} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # adapt
        step = "cutadapt"
        fq = f'{outdir_dic["barcode"]}/{sample}_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} --outdir '
               f'{outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # mapping_smk
        step = 'mapping_smk'
        SMK_read2 = f'{outdir_dic["cutadapt"]}/{sample}_clean_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--SMK_read2 {SMK_read2} '
               f'--SMK_pattern {SMK_pattern} '
               f'--SMK_barcode {SMK_barcode} '
               f'--SMK_linker {SMK_linker} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # count_smk
        step = 'count_smk'
        read_file = f'{outdir_dic["mapping_smk"]}/{sample}_read_count.tsv'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--match_dir {match_dict[sample]} '
               f'--read_file {read_file} '
               f'--dim {dim} '
               f'--UMI_min {UMI_min} '
               f'--SNR_min {SNR_min} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # analysis_smk
        step = 'analysis_smk'
        tsne_tag_file = f'{outdir_dic["count_smk"]}/{sample}_tsne_tag.tsv'
        cmd = (f'{app} {assay} {step} '
               f'--sample {sample} '
               f'--outdir {outdir_dic[step]} '
               f'--assay {assay} '
               f'--match_dir {match_dict[sample]} '
               f'--tsne_tag_file {tsne_tag_file} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

    # merged report
    if mod == 'sjm':
        step = 'merge_report'
        merge_report(
            fq_dict,
            steps,
            last_step,
            sjm_cmd,
            sjm_order,
            logdir,
            conda,
            outdir,
            rm_files,
        )
    if mod == 'shell':
        os.system('mkdir -p ./shell/')
        with open(f'./shell/{sample}.sh', 'w') as f:
            f.write(shell)
Beispiel #5
0
def main():

    # init
    assay = __ASSAY__
    steps = __STEPS__
    conda = __CONDA__
    app = 'celescope'

    # parser
    parser = multi_opts(assay)
    parser.add_argument('--thread', help='thread', default=6)
    args = parser.parse_args()

    # read args
    outdir = args.outdir
    chemistry = args.chemistry
    pattern = args.pattern
    whitelist = args.whitelist
    linker = args.linker
    lowQual = args.lowQual
    lowNum = args.lowNum
    mod = args.mod
    rm_files = args.rm_files

    # parse mapfile
    fq_dict, match_dict = parse_map_col4(args.mapfile, None)

    # link
    link_data(outdir, fq_dict)

    # custom args
    thread = args.thread

    # mk log dir
    logdir = outdir + '/log'
    os.system('mkdir -p %s' % (logdir))

    # script init
    sjm_cmd = 'log_dir %s\n' % (logdir)
    sjm_order = ''
    shell = ''

    # outdir dict
    for sample in fq_dict:
        outdir_dic = {}
        index = 0
        for step in steps:
            step_outdir = f"{outdir}/{sample}/{index:02d}.{step}"
            outdir_dic.update({step: step_outdir})
            index += 1

        # sample
        step = "sample"
        cmd = (
            f'{app} {assay} {step} '
            f'--chemistry {chemistry} '
            f'--sample {sample} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda)
        shell += cmd + '\n'
        last_step = step

        # barcode
        arr = fq_dict[sample]
        step = "barcode"
        cmd = (
            f'{app} {assay} {step} '
            f'--fq1 {arr[0]} --fq2 {arr[1]} --chemistry {chemistry} '
            f'--pattern {pattern} --whitelist {whitelist} --linker {linker} '
            f'--sample {sample} --lowQual {lowQual} --thread {thread} '
            f'--lowNum {lowNum} --outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # adapt
        step = "cutadapt"
        fq = f'{outdir_dic["barcode"]}/{sample}_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} --outdir '
               f'{outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=5, x=1)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

        # mapping_hla
        step = 'mapping_hla'
        fq = f'{outdir_dic["cutadapt"]}/{sample}_clean_2.fq.gz'
        cmd = (f'{app} {assay} {step} '
               f'--fq {fq} --sample {sample} '
               f'--thread {thread} '
               f'--match_dir {match_dict[sample]} '
               f'--outdir {outdir_dic[step]} --assay {assay} ')
        sjm_cmd += generate_sjm(cmd, f'{step}_{sample}', conda, m=30, x=thread)
        sjm_order += f'order {step}_{sample} after {last_step}_{sample}\n'
        shell += cmd + '\n'
        last_step = step

    # merged report
    if mod == 'sjm':
        step = 'merge_report'
        merge_report(
            fq_dict,
            steps,
            last_step,
            sjm_cmd,
            sjm_order,
            logdir,
            conda,
            outdir,
            rm_files,
        )
    if mod == 'shell':
        os.system('mkdir -p ./shell/')
        with open(f'./shell/{sample}.sh', 'w') as f:
            f.write(shell)