Beispiel #1
0
    def test_classifier_dataset(self):
        """Unit test of DictDataset"""

        x1 = [
            torch.Tensor([1]),
            torch.Tensor([1, 2]),
            torch.Tensor([1, 2, 3]),
            torch.Tensor([1, 2, 3, 4]),
            torch.Tensor([1, 2, 3, 4, 5]),
        ]

        y1 = torch.Tensor([0, 0, 0, 0, 0])

        dataset = DictDataset(
            X_dict={"data1": x1}, Y_dict={"task1": y1}, name="new_data", split="train"
        )

        # Check if the dataset is correctly constructed
        self.assertTrue(torch.equal(dataset[0][0]["data1"], x1[0]))
        self.assertTrue(torch.equal(dataset[0][1]["task1"], y1[0]))
        self.assertEqual(
            repr(dataset),
            "DictDataset(name=new_data, X_keys=['data1'], Y_keys=['task1'])",
        )

        # Test from_tensors inits with default values
        dataset = DictDataset.from_tensors(x1, y1, "train")
        self.assertEqual(
            repr(dataset),
            f"DictDataset(name={DEFAULT_DATASET_NAME}, "
            f"X_keys=['{DEFAULT_INPUT_DATA_KEY}'], Y_keys=['{DEFAULT_TASK_NAME}'])",
        )
Beispiel #2
0
def create_dataloader(task_name="task", split="train", **kwargs):
    X = torch.FloatTensor([[i, i] for i in range(NUM_EXAMPLES)])
    Y = torch.ones(NUM_EXAMPLES).long()

    dataset = DictDataset(name="dataset",
                          split=split,
                          X_dict={"data": X},
                          Y_dict={task_name: Y})

    dataloader = DictDataLoader(dataset, batch_size=BATCH_SIZE, **kwargs)
    return dataloader
Beispiel #3
0
    def test_score_shuffled(self):
        # Test scoring with a shuffled dataset

        class SimpleVoter(nn.Module):
            def forward(self, x):
                """Set class 0 to -1 if x and 1 otherwise"""
                mask = x % 2 == 0
                out = torch.zeros(x.shape[0], 2)
                out[mask, 0] = 1  # class 0
                out[~mask, 1] = 1  # class 1
                return out

        # Create model
        task_name = "VotingTask"
        module_name = "simple_voter"
        module_pool = nn.ModuleDict({module_name: SimpleVoter()})
        op0 = Operation(module_name=module_name,
                        inputs=[("_input_", "data")],
                        name="op0")
        op_sequence = [op0]
        task = Task(name=task_name,
                    module_pool=module_pool,
                    op_sequence=op_sequence)
        model = MultitaskModel([task])

        # Create dataset
        y_list = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
        x_list = [i for i in range(len(y_list))]
        Y = torch.LongTensor(y_list * 100)
        X = torch.FloatTensor(x_list * 100)
        dataset = DictDataset(name="dataset",
                              split="train",
                              X_dict={"data": X},
                              Y_dict={task_name: Y})

        # Create dataloaders
        dataloader = DictDataLoader(dataset, batch_size=2, shuffle=False)
        scores = model.score([dataloader])

        self.assertEqual(scores["VotingTask/dataset/train/accuracy"], 0.6)

        dataloader_shuffled = DictDataLoader(dataset,
                                             batch_size=2,
                                             shuffle=True)
        scores_shuffled = model.score([dataloader_shuffled])
        self.assertEqual(scores_shuffled["VotingTask/dataset/train/accuracy"],
                         0.6)
Beispiel #4
0
    def test_remapped_labels(self):
        # Test additional label keys in the Y_dict
        # Without remapping, model should ignore them
        task_name = self.task1.name
        X = torch.FloatTensor([[i, i] for i in range(NUM_EXAMPLES)])
        Y = torch.ones(NUM_EXAMPLES).long()

        Y_dict = {task_name: Y, "other_task": Y}
        dataset = DictDataset(name="dataset",
                              split="train",
                              X_dict={"data": X},
                              Y_dict=Y_dict)
        dataloader = DictDataLoader(dataset, batch_size=BATCH_SIZE)

        model = MultitaskModel([self.task1])
        loss_dict, count_dict = model.calculate_loss(dataset.X_dict,
                                                     dataset.Y_dict)
        self.assertIn("task1", loss_dict)

        # Test setting without remapping
        results = model.predict(dataloader)
        self.assertIn("task1", results["golds"])
        self.assertNotIn("other_task", results["golds"])
        scores = model.score([dataloader])
        self.assertIn("task1/dataset/train/accuracy", scores)
        self.assertNotIn("other_task/dataset/train/accuracy", scores)

        # Test remapped labelsets
        results = model.predict(dataloader,
                                remap_labels={"other_task": task_name})
        self.assertIn("task1", results["golds"])
        self.assertIn("other_task", results["golds"])
        results = model.score([dataloader],
                              remap_labels={"other_task": task_name})
        self.assertIn("task1/dataset/train/accuracy", results)
        self.assertIn("other_task/dataset/train/accuracy", results)
Beispiel #5
0
    def test_classifier_dataloader(self):
        """Unit test of DictDataLoader"""

        x1 = [
            torch.Tensor([1]),
            torch.Tensor([1, 2]),
            torch.Tensor([1, 2, 3]),
            torch.Tensor([1, 2, 3, 4]),
            torch.Tensor([1, 2, 3, 4, 5]),
        ]

        y1 = torch.Tensor([0, 0, 0, 0, 0])

        x2 = [
            torch.Tensor([1, 2, 3, 4, 5]),
            torch.Tensor([1, 2, 3, 4]),
            torch.Tensor([1, 2, 3]),
            torch.Tensor([1, 2]),
            torch.Tensor([1]),
        ]

        y2 = torch.Tensor([1, 1, 1, 1, 1])

        dataset = DictDataset(
            name="new_data",
            split="train",
            X_dict={"data1": x1, "data2": x2},
            Y_dict={"task1": y1, "task2": y2},
        )

        dataloader1 = DictDataLoader(dataset=dataset, batch_size=2)

        x_batch, y_batch = next(iter(dataloader1))

        # Check if the dataloader is correctly constructed
        self.assertEqual(dataloader1.dataset.split, "train")
        self.assertTrue(torch.equal(x_batch["data1"], torch.Tensor([[1, 0], [1, 2]])))
        self.assertTrue(
            torch.equal(
                x_batch["data2"], torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0]])
            )
        )
        self.assertTrue(torch.equal(y_batch["task1"], torch.Tensor([0, 0])))
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([1, 1])))

        dataloader2 = DictDataLoader(dataset=dataset, batch_size=3)

        x_batch, y_batch = next(iter(dataloader2))

        # Check if the dataloader with differet batch size is correctly constructed
        self.assertEqual(dataloader2.dataset.split, "train")
        self.assertTrue(
            torch.equal(
                x_batch["data1"], torch.Tensor([[1, 0, 0], [1, 2, 0], [1, 2, 3]])
            )
        )
        self.assertTrue(
            torch.equal(
                x_batch["data2"],
                torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0], [1, 2, 3, 0, 0]]),
            )
        )
        self.assertTrue(torch.equal(y_batch["task1"], torch.Tensor([0, 0, 0])))
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([1, 1, 1])))

        y3 = [
            torch.Tensor([2]),
            torch.Tensor([2]),
            torch.Tensor([2]),
            torch.Tensor([2]),
            torch.Tensor([2]),
        ]

        dataset.Y_dict["task2"] = y3

        x_batch, y_batch = next(iter(dataloader1))
        # Check dataloader is correctly updated with update dataset
        self.assertTrue(
            torch.equal(
                x_batch["data2"], torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0]])
            )
        )
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([[2], [2]])))

        x_batch, y_batch = next(iter(dataloader2))
        self.assertTrue(
            torch.equal(
                x_batch["data2"],
                torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0], [1, 2, 3, 0, 0]]),
            )
        )
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([[2], [2], [2]])))
Beispiel #6
0
#
# In the `DictDataset`, each label corresponds to a particular `Task` by name. We'll define these `Task` objects in the following section as we define our model.
#
# `DictDataLoader` is a wrapper for `torch.utils.data.DataLoader`, which handles the collate function for `DictDataset` appropriately.

# +
from cerbero.core import DictDataset, DictDataLoader

dataloaders = []
for task_name in ["class", "rgb"]:
    for split, X, Y in (("train", X_train, Y_train), ("valid", X_val, Y_val),
                        ("test", X_test, Y_test)):
        X_dict = {f"{task_name}_data": torch.FloatTensor(X[task_name])}
        YTensor = torch.FloatTensor if task_name == "rgb" else torch.LongTensor
        Y_dict = {f"{task_name}_task": YTensor(Y[task_name])}
        dataset = DictDataset(f"{task_name}Dataset", split, X_dict, Y_dict)
        dataloader = DictDataLoader(dataset, batch_size=32)
        dataloaders.append(dataloader)
# -

# We now have 4 data loaders, one for each split (`train`, `val`) of each task (`class_task` and `rgb_task`)

# ## Define Model

# Now we'll define the `MultitaskClassifier` model, a PyTorch multi-task classifier. We'll instantiate it from a list of `Tasks`

# +
import torch.nn as nn
from cerbero.core import Operation

Beispiel #7
0
import random
import unittest

import numpy as np
import torch

from cerbero.core import DictDataLoader, DictDataset
from cerbero.schedulers import SequentialScheduler, ShuffledScheduler

dataset1 = DictDataset(
    "d1",
    "train",
    X_dict={"data": [0, 1, 2, 3, 4]},
    Y_dict={"labels": torch.LongTensor([1, 1, 1, 1, 1])},
)
dataset2 = DictDataset(
    "d2",
    "train",
    X_dict={"data": [5, 6, 7, 8, 9]},
    Y_dict={"labels": torch.LongTensor([2, 2, 2, 2, 2])},
)

dataloader1 = DictDataLoader(dataset1, batch_size=2)
dataloader2 = DictDataLoader(dataset2, batch_size=2)
dataloaders = [dataloader1, dataloader2]


class SequentialTest(unittest.TestCase):
    def test_sequential(self):
        scheduler = SequentialScheduler()
        data = []
Beispiel #8
0
#
# `DictDataloader` is a wrapper for `torch.utils.data.Dataloader`, which handles the collate function for `DictDataset` appropriately.

# +
from cerbero.core import DictDataset, DictDataLoader

dataloaders = []
for task_name in ["circle", "square"]:
    for split, X, Y in (
        ("train", X_train, Y_train),
        ("valid", X_valid, Y_valid),
        ("test", X_test, Y_test),
    ):
        X_dict = {f"{task_name}_data": torch.FloatTensor(X[task_name])}
        Y_dict = {f"{task_name}_task": torch.LongTensor(Y[task_name])}
        dataset = DictDataset(f"{task_name}Dataset", split, X_dict, Y_dict)
        dataloader = DictDataLoader(dataset, batch_size=32)
        dataloaders.append(dataloader)
# -

# We now have 6 data loaders, one for each split (`train`, `valid`, `test`) of each task (`circle_task` and `square_task`).

# ## Define Model

# Now we'll define the `MultitaskClassifier` model, a PyTorch multi-task classifier.
# We'll instantiate it from a list of `Tasks`.

# ### Tasks

# A `Task` represents a path through a neural network. In `MultitaskClassifier`, this path corresponds to a particular sequence of PyTorch modules through which each data point will make a forward pass.
#