def test_detection_dataset(): from cfgs.config_v2 import add_cfg dataset_yaml = '/home/cory/yolo2-pytorch/cfgs/config_voc.yaml' exp_yaml = '/home/cory/yolo2-pytorch/cfgs/exps/voc0712/voc0712_baseline.yaml' cfg = dict() add_cfg(cfg, dataset_yaml) add_cfg(cfg, exp_yaml) dataset = DetectionDataset(cfg) num_workers = 4 batch_size = 16 dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) t0 = time.time() for i, data in enumerate(dataloader): if i > 100: break # get the inputs inputs, labels = data print(i, inputs.size(), labels.size()) # wrap them in Variable inputs, labels = Variable(inputs.cuda()), labels import numpy as np assert np.sum(inputs.data.cpu().numpy()) > 0 t1 = time.time() print(t1 - t0)
def voc_ap_main(): os.environ['CUDA_VISIBLE_DEVICES'] = '0' dataset_yaml = '/home/cory/yolo2-pytorch/cfgs/config_voc.yaml' exp_yaml = '/home/cory/yolo2-pytorch/cfgs/exps/voc0712/voc0712_baseline_v3_rand.yaml' cfg = dict() add_cfg(cfg, dataset_yaml) add_cfg(cfg, exp_yaml) epoch = 160 model_dir = cfg['train_output_dir'] model_name = cfg['exp_name'] model = model_dir + '/' + model_name + '_' + str(epoch) + '.h5' # model = '/home/cory/yolo2-pytorch/models/yolo-voc.weights.h5' print(model) voc_ap(model, cfg)
def test_detection_dataset(): from cfgs.config_v2 import add_cfg dataset_yaml = '/home/cory/yolo2-pytorch/cfgs/config_voc.yaml' exp_yaml = '/home/cory/yolo2-pytorch/cfgs/exps/voc0712/voc0712_baseline.yaml' cfg = dict() add_cfg(cfg, dataset_yaml) add_cfg(cfg, exp_yaml) dataset = DetectionDataset(cfg) dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True, num_workers=4) for i, data in enumerate(dataloader): # get the inputs print(i) inputs, labels = data print(inputs.size(), labels.size()) # wrap them in Variable inputs, labels = Variable(inputs), labels
from cfgs.config_v2 import add_cfg import utils.network as net_utils from darknet_v3 import Darknet19 from datasets.ImageFileDataset_v2 import ImageFileDataset from utils.timer import Timer from train.train_util_v2 import * # dataset_yaml = '/home/cory/yolo2-pytorch/cfgs/config_kitti.yaml' # exp_yaml = '/home/cory/yolo2-pytorch/cfgs/exps/kitti_new_2.yaml' dataset_yaml = '/home/cory/yolo2-pytorch/cfgs/config_voc.yaml' exp_yaml = '/home/cory/yolo2-pytorch/cfgs/exps/voc0712_template.yaml' cfg = dict() # add_cfg(cfg, '/home/cory/yolo2-pytorch/cfgs/config_voc.yaml') add_cfg(cfg, dataset_yaml) add_cfg(cfg, exp_yaml) # data loader imdb = ImageFileDataset(cfg, ImageFileDataset.preprocess_train, processes=4, shuffle=False, dst_size=None, mode='val') print('imdb load data succeeded') net = Darknet19(cfg) # CUDA_VISIBLE_DEVICES=1 # 20 0.68