Beispiel #1
0
    def place(self,
              current_episode: Episode,
              action_id: int,
              action: Action,
              action_frame: Affine,
              image_frame: Affine,
              place_bin=None):
        place_bin = place_bin if place_bin else self.current_bin

        self.move_to_safety(self.md)

        md_approach_down = MotionData().with_dynamics(
            0.22).with_z_force_condition(7.0)
        md_approach_up = MotionData().with_dynamics(
            1.0).with_z_force_condition(20.0)

        action_approch_affine = Affine(z=Config.approach_distance_from_pose)
        action_approach_frame = action_frame * action_approch_affine

        if Config.release_in_other_bin:
            self.move_to_release(self.md, target=action_approach_frame)
        else:
            self.robot.move_cartesian(Frames.gripper, action_approach_frame,
                                      self.md)

        self.robot.move_relative_cartesian(Frames.gripper,
                                           action_approch_affine.inverse(),
                                           md_approach_down)

        if md_approach_down.did_break:
            self.robot.recover_from_errors()
            action.collision = True
            self.robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001),
                                               md_approach_up)

        action.final_pose = RobotPose(
            affine=(image_frame.inverse() *
                    self.robot.current_pose(Frames.gripper)))

        action.pose.d = self.gripper.width()
        self.gripper.release(action.pose.d + 0.01)  # [m]

        if Config.mode is not Mode.Perform:
            self.move_to_safety(md_approach_up)

        if Config.mode is Mode.Measure and Config.take_after_images:
            self.robot.move_cartesian(Frames.camera, image_frame, self.md)
            self.last_after_images = self.take_images(current_bin=place_bin)
            self.saver.save_image(self.last_after_images,
                                  current_episode.id,
                                  action_id,
                                  'after',
                                  action=action)
Beispiel #2
0
    def shift(self, current_episode: Episode, action_id: int, action: Action,
              action_frame: Affine, image_frame: Affine):
        md_approach_down = MotionData().with_dynamics(
            0.15).with_z_force_condition(6.0)
        md_approach_up = MotionData().with_dynamics(
            0.6).with_z_force_condition(20.0)
        md_shift = MotionData().with_dynamics(0.1).with_xy_force_condition(
            10.0)

        action_approch_affine = Affine(z=Config.approach_distance_from_pose)
        action_approach_frame = action_approch_affine * action_frame

        try:
            process_gripper = Process(target=self.gripper.move,
                                      args=(action.pose.d, ))
            process_gripper.start()

            self.robot.move_cartesian(Frames.gripper, action_approach_frame,
                                      self.md)

            process_gripper.join()
        except OSError:
            self.gripper.move(0.08)
            self.robot.move_cartesian(Frames.gripper, action_approach_frame,
                                      self.md)

        self.robot.move_relative_cartesian(Frames.gripper,
                                           action_approch_affine.inverse(),
                                           md_approach_down)

        if md_approach_down.did_break:
            self.robot.recover_from_errors()
            action.collision = True
            self.robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001),
                                               md_approach_up)

        self.robot.move_relative_cartesian(
            Frames.gripper,
            Affine(x=action.shift_motion[0], y=action.shift_motion[1]),
            md_shift)
        self.robot.move_relative_cartesian(Frames.gripper,
                                           action_approch_affine,
                                           md_approach_up)
Beispiel #3
0
def place(
        robot: Robot,
        gripper: Gripper,
        current_episode: Episode,
        current_bin: Bin,
        action: Action,
        action_frame: Affine,
        grasp_action: Action,
        image_frame: Affine,
        camera: Camera,
        saver: Saver,
        md: MotionData
    ) -> None:

    move_to_safety(robot, md)

    md_approach_down = MotionData().with_dynamics(0.3).with_z_force_condition(7.0)
    md_approach_up = MotionData().with_dynamics(1.0).with_z_force_condition(20.0)

    action_approch_affine = Affine(z=Config.approach_distance_from_pose)
    action_approach_frame = action_frame * action_approch_affine

    robot.move_cartesian(Frames.gripper, action_approach_frame, md)
    robot.move_relative_cartesian(Frames.gripper, action_approch_affine.inverse(), md_approach_down)

    if md_approach_down.did_break:
        robot.recover_from_errors()
        action.collision = True
        robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001), md_approach_up)

    action.final_pose = RobotPose(affine=(image_frame.inverse() * robot.current_pose(Frames.gripper)))

    gripper.release(grasp_action.final_pose.d + 0.006)  # [m]

    if Config.mode is not Mode.Perform:
        move_to_safety(robot, md_approach_up)

    if Config.mode is Mode.Measure and Config.take_after_images and Config.release_in_other_bin:
        robot.move_cartesian(Frames.camera, image_frame, md)
        saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)
Beispiel #4
0
def shift(
        robot: Robot,
        gripper: Gripper,
        current_episode: Episode,
        current_bin: Bin,
        action: Action,
        action_frame: Affine,
        image_frame: Affine,
        camera: Camera,
        saver: Saver,
        md: MotionData
    ) -> None:
    md_approach_down = MotionData().with_dynamics(0.15).with_z_force_condition(6.0)
    md_approach_up = MotionData().with_dynamics(0.6).with_z_force_condition(20.0)
    md_shift = MotionData().with_dynamics(0.1).with_xy_force_condition(10.0)

    action_approch_affine = Affine(z=Config.approach_distance_from_pose)
    action_approach_frame = action_approch_affine * action_frame

    try:
        process_gripper = Process(target=gripper.move, args=(action.pose.d, ))
        process_gripper.start()

        robot.move_cartesian(Frames.gripper, action_approach_frame, md)

        process_gripper.join()
    except OSError:
        gripper.move(0.08)
        robot.move_cartesian(Frames.gripper, action_approach_frame, md)

    robot.move_relative_cartesian(Frames.gripper, action_approch_affine.inverse(), md_approach_down)

    if md_approach_down.did_break:
        robot.recover_from_errors()
        action.collision = True
        robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001), md_approach_up)

    robot.move_relative_cartesian(Frames.gripper, Affine(x=action.shift_motion[0], y=action.shift_motion[1]), md_shift)
    robot.move_relative_cartesian(Frames.gripper, action_approch_affine, md_approach_up)
Beispiel #5
0
    def move_to_release(self,
                        md: MotionData,
                        direct=False,
                        target=None) -> bool:
        possible_random_affine = Affine()
        if Config.random_pose_before_release:
            possible_random_affine = Config.max_random_affine_before_release.get_inner_random(
            )

        target = target if target else Frames.get_release_frame(
            Frames.get_next_bin(self.current_bin)) * possible_random_affine

        self.robot.recover_from_errors()

        if Config.mode is Mode.Measure:
            self.move_to_safety(md)

        if Config.release_in_other_bin:
            if Config.release_as_fast_as_possible:
                waypoints = [
                    Waypoint(Frames.release_fastest,
                             Waypoint.ReferenceType.ABSOLUTE)
                ]
            else:
                waypoints = [Waypoint(target, Waypoint.ReferenceType.ABSOLUTE)]

                if not direct:
                    waypoints.insert(
                        0,
                        Waypoint(Frames.release_midway,
                                 Waypoint.ReferenceType.ABSOLUTE))

            return self.robot.move_waypoints_cartesian(Frames.gripper,
                                                       waypoints, MotionData())

        return self.robot.move_cartesian(
            Frames.gripper,
            Frames.get_release_frame(self.current_bin) *
            possible_random_affine, MotionData())
Beispiel #6
0
def move_to_release(robot: Robot, current_bin: Bin, md: MotionData) -> bool:
    possible_random_affine = Affine()
    if Config.random_pose_before_release:
        possible_random_affine = Config.max_random_affine_before_release.get_inner_random()

    robot.recover_from_errors()

    if Config.mode is Mode.Measure:
        move_to_safety(robot, md)

    if Config.release_in_other_bin:
        if Config.release_as_fast_as_possible:
            waypoints = [
                Waypoint(
                    Frames.release_fastest,
                    Waypoint.ReferenceType.ABSOLUTE
                )
            ]
        else:
            waypoints = [
                Waypoint(
                    Frames.release_midway,
                    Waypoint.ReferenceType.ABSOLUTE
                ),
                Waypoint(
                    Frames.get_release_frame(Frames.get_next_bin(current_bin)) * possible_random_affine,
                    Waypoint.ReferenceType.ABSOLUTE
                )
            ]
        return robot.move_waypoints_cartesian(Frames.gripper, waypoints, MotionData())

    return robot.move_cartesian(
        Frames.gripper,
        Frames.get_release_frame(current_bin) * possible_random_affine,
        MotionData()
    )
Beispiel #7
0
    def __init__(self):
        self.camera = Camera(camera_suffixes=Config.camera_suffixes)
        self.history = EpisodeHistory()
        self.gripper = Gripper('172.16.0.2', Config.gripper_speed,
                               Config.gripper_force)
        self.robot = Robot('panda_arm', Config.general_dynamics_rel)
        self.saver = Saver(Config.database_url, Config.collection)

        self.current_bin = Config.start_bin

        self.md = MotionData().with_dynamics(1.0)

        self.overall_start = 0

        self.last_after_images: Optional[List[OrthographicImage]] = None
Beispiel #8
0
import numpy as np

from argparse import ArgumentParser

from cfrankr import Robot, Affine, MotionData

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--host',
                        default='panda_arm',
                        help='name of the robot')
    args = parser.parse_args()

    # Setup Robot
    general_dynamics_rel = 0.32
    robot = Robot(args.host, general_dynamics_rel)
    #robot.recover_from_errors()

    # Move down
    md_approach_down = MotionData().with_dynamics(0.3).with_z_force_condition(
        7.0)  # dynamtics is both velocity and acceleration of robot (= 0.3)
    tcp = Affine(0.0, 0.0, 0.18, -np.pi / 4, 0.0, -np.pi)
    approach_distance_from_pose = 0.120
    action_approch_affine = Affine(z=approach_distance_from_pose)
    robot.move_relative_cartesian(tcp, action_approch_affine.inverse(),
                                  md_approach_down)
    def manipulate(self) -> None:
        current_bin_episode = None
        goal_images = None

        for epoch in Config.epochs:
            while self.history.total() < epoch.number_episodes:
                current_episode = Episode()
                current_bin_episode = current_bin_episode if current_bin_episode else current_episode.id
                current_selection_method = self.get_current_selection_method(
                    epoch)

                start = time.time()

                place_action_in_other_bin = Config.release_in_other_bin and not Config.release_during_grasp_action
                place_bin = Frames.get_next_bin(
                    self.current_bin
                ) if place_action_in_other_bin else self.current_bin

                if (not Config.predict_images) or self.agent.reinfer_next_time:
                    self.robot.recover_from_errors()

                    if not place_action_in_other_bin or Config.take_after_images:
                        self.robot.move_joints(
                            Frames.bin_joint_values[self.current_bin], self.md)

                    b, c = random.choice(
                        Config.overview_image_angles
                    ) if Config.lateral_overview_image else 0, 0
                    camera_frame_overview = Frames.get_camera_frame(
                        self.current_bin, b=b, c=c)
                    if not Frames.is_camera_frame_safe(camera_frame_overview):
                        continue

                    if place_action_in_other_bin:
                        self.robot.move_cartesian(
                            Frames.camera,
                            Frames.get_camera_frame(place_bin, b=b, c=c),
                            self.md)
                    elif Config.take_goal_images:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    if Config.take_goal_images:
                        new_goal_images = self.take_goal_images(
                            current_bin=place_bin,
                            current_goal_images=goal_images)
                        goal_images = new_goal_images if new_goal_images else goal_images

                    elif Config.use_goal_images:
                        attr = random.choice(
                            GoalDatabase.get(Config.goal_images_dataset))
                        goal_images = [
                            Loader.get_image(attr[0], attr[1], attr[2], s)
                            for s in attr[3]
                        ]

                    if place_action_in_other_bin:
                        place_image_frame = self.robot.current_pose(
                            Frames.camera)
                        place_images = self.take_images(
                            image_frame=place_image_frame,
                            current_bin=place_bin)

                    if Config.mode is Mode.Measure or Config.lateral_overview_image:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    image_frame = self.robot.current_pose(Frames.camera)
                    images = self.take_images(image_frame=image_frame)

                    if not Frames.is_gripper_frame_safe(
                            self.robot.current_pose(Frames.gripper)):
                        logger.info('Image frame not safe!')
                        self.robot.recover_from_errors()
                        continue

                input_images = self.get_input_images(images)
                input_place_images = self.get_input_images(
                    place_images) if place_action_in_other_bin else None
                input_goal_images = None

                if Config.use_goal_images:
                    if isinstance(goal_images, list) and isinstance(
                            goal_images[0], list):
                        goal_images_single = goal_images.pop(0)
                    else:
                        goal_images_single = goal_images

                    input_goal_images = self.get_input_images(
                        goal_images_single)

                actions = self.agent.infer(
                    input_images,
                    current_selection_method,
                    goal_images=input_goal_images,
                    place_images=input_place_images,
                )

                for action_id, action in enumerate(actions):
                    logger.info(
                        f'Action ({action_id+1}/{len(actions)}): {action}')

                for action_id, action in enumerate(actions):
                    action.images = {}
                    action.save = True
                    action.bin = self.current_bin
                    action.bin_episode = current_bin_episode

                    current_action_place_in_other_bin = place_action_in_other_bin and action.type == 'place'
                    current_image_pose = place_image_frame if current_action_place_in_other_bin else image_frame
                    current_bin = place_bin if current_action_place_in_other_bin else self.current_bin

                    if Config.mode is Mode.Measure:
                        before_images = place_images if current_action_place_in_other_bin else images
                        self.saver.save_image(before_images,
                                              current_episode.id,
                                              action_id,
                                              'v',
                                              action=action)

                        if Config.use_goal_images:
                            self.saver.save_image(goal_images_single,
                                                  current_episode.id,
                                                  action_id,
                                                  'goal',
                                                  action=action)

                    self.saver.save_action_plan(action, current_episode.id)

                    logger.info(
                        f'Executing action: {action_id} at time {time.time() - self.overall_start:0.1f}'
                    )

                    if Config.set_zero_reward:
                        action.safe = -1

                    execute_action = True

                    if action.type == 'bin_empty':
                        action.save = False
                        execute_action = False
                    elif action.type == 'new_image':
                        action.save = False
                        execute_action = False
                        self.agent.reinfer_next_time = True

                    if action.safe <= 0:
                        execute_action = False
                        action.collision = True

                        # Set actions after this action to unsafe
                        for a in actions[action_id + 1:]:
                            a.safe = action.safe

                        reason = 'not within box' if action.safe == -1 else 'not a number'
                        logger.warning(
                            f'Action (type={action.type}) is {reason} (safe={action.safe}).'
                        )

                        if action.safe == 0 and action.type in [
                                'grasp', 'shift'
                        ]:
                            logger.warning(f'Episode is not saved.')
                            current_episode.save = False
                            break

                        if action.type == 'place' and action_id > 0:
                            prior_action = actions[action_id - 1]

                            if prior_action.type == 'grasp' and prior_action.reward > 0:
                                central_pose = RobotPose(
                                    affine=Affine(z=-0.28), d=action.pose.d)

                                action_frame = Frames.get_action_pose(
                                    action_pose=central_pose,
                                    image_pose=current_image_pose)
                                self.place(current_episode, action_id, action,
                                           action_frame, current_image_pose)

                    # Dont place if grasp was not successful
                    if action.type == 'place' and action_id > 0:
                        prior_action = actions[action_id - 1]

                        if prior_action.type == 'grasp' and (
                                prior_action.reward == 0
                                or prior_action.safe < 1):
                            execute_action = False

                    if Config.take_lateral_images and action.save and Config.mode is Mode.Measure:
                        md_lateral = MotionData().with_dynamics(1.0)

                        for b, c in Config.lateral_images_angles:
                            lateral_frame = Frames.get_camera_frame(
                                current_bin,
                                a=action.pose.a,
                                b=b,
                                c=c,
                                reference_pose=image_frame)

                            if not Frames.is_camera_frame_safe(
                                    lateral_frame) or (b == 0.0 and c == 0.0):
                                continue

                            lateral_move_succss = self.robot.move_cartesian(
                                Frames.camera, lateral_frame,
                                md_lateral)  # Remove a for global b, c pose
                            if lateral_move_succss:
                                self.saver.save_image(
                                    self.take_images(current_bin=current_bin),
                                    current_episode.id,
                                    action_id,
                                    f'lateral_b{b:0.3f}_c{c:0.3f}'.replace(
                                        '.', '_'),
                                    action=action)

                    if execute_action:
                        action_frame = Frames.get_action_pose(
                            action_pose=action.pose,
                            image_pose=current_image_pose)

                        if Config.mode is Mode.Measure and Config.take_direct_images:
                            self.robot.move_cartesian(
                                Frames.camera,
                                Affine(z=0.308) * Affine(b=0.0, c=0.0) *
                                action_frame)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'direct',
                                action=action)

                        if action.type == 'grasp':
                            self.grasp(current_episode, action_id, action,
                                       action_frame, current_image_pose)

                            if Config.use_goal_images and self.last_after_images and not place_action_in_other_bin:  # Next action is Place
                                place_action_id = action_id + 1
                                actions[
                                    place_action_id].pose.d = self.gripper.width(
                                    )  # Use current gripper width for safety analysis
                                self.agent.converter.calculate_pose(
                                    actions[place_action_id],
                                    self.last_after_images)

                        elif action.type == 'shift':
                            old_reward_around_action = 0.0
                            self.shift(current_episode, action_id, action,
                                       action_frame, current_image_pose)
                            new_reward_around_action = 0.0

                            action.reward = new_reward_around_action - old_reward_around_action

                        elif action.type == 'place':
                            self.place(current_episode,
                                       action_id,
                                       action,
                                       action_frame,
                                       current_image_pose,
                                       place_bin=place_bin)
                            action.reward = actions[action_id - 1].reward

                    else:
                        if Config.take_after_images:
                            self.robot.move_cartesian(Frames.camera,
                                                      current_image_pose,
                                                      self.md)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'after',
                                action=action)

                    action.execution_time = time.time() - start
                    logger.info(
                        f'Time for action: {action.execution_time:0.3f} [s]')

                    if action.save:
                        current_episode.actions.append(action)
                        self.history.append(current_episode)
                    else:
                        break

                    logger.info(
                        f'Episodes (reward / done / total): {self.history.total_reward(action_type="grasp")} / {self.history.total()} / {sum(e.number_episodes for e in Config.epochs)}'
                    )
                    logger.info(
                        f'Last success: {self.history.failed_grasps_since_last_success_in_bin(self.current_bin)} cycles ago.'
                    )

                    # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                # Switch bin
                should_change_bin_for_evaluation = (
                    Config.mode is Mode.Evaluate
                    and self.history.successful_grasps_in_bin(self.current_bin)
                    == Config.change_bin_at_number_of_success_grasps)
                should_change_bin = (
                    Config.mode is not Mode.Evaluate
                    and (self.history.failed_grasps_since_last_success_in_bin(
                        self.current_bin) >=
                         Config.change_bin_at_number_of_failed_grasps
                         or action.type == 'bin_empty'))
                if should_change_bin_for_evaluation or (Config.change_bins
                                                        and should_change_bin):
                    if Config.mode is Mode.Evaluate:
                        pass
                        # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                    self.current_bin = Frames.get_next_bin(self.current_bin)
                    self.agent.reinfer_next_time = True
                    current_bin_episode = None
                    logger.info('Switch to other bin.')

                    if Config.mode is not Mode.Perform and Config.home_gripper:
                        self.gripper.homing()

                if Config.mode is Mode.Measure and current_episode.actions and current_episode.save:
                    logger.info(f'Save episode {current_episode.id}.')
                    self.saver.save_episode(current_episode)

                # Retrain model
                if Config.train_model and self.history.total(
                ) > 0 and not self.history.total(
                ) % Config.train_model_every_number_cycles:
                    logger.warning('Retrain model!')
                    self.retrain_model()

        logger.info('Finished cleanly.')
Beispiel #10
0
from argparse import ArgumentParser

from cfrankr import Robot, MotionData

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--host',
                        default='panda_arm',
                        help='name of the robot')
    args = parser.parse_args()

    # Setup Robot
    general_dynamics_rel = 0.32
    robot = Robot(args.host, general_dynamics_rel)
    #robot.recover_from_errors()

    # Move down
    md_home = MotionData().with_dynamics(0.3)
    robot.move_joints([
        -1.811944, 1.179108, 1.757100, -2.14162, -1.143369, 1.633046, -0.432171
    ], md_home)
Beispiel #11
0
def grasp(
        robot: Robot,
        gripper: Gripper,
        current_episode: Episode,
        current_bin: Bin,
        action: Action,
        action_frame: Affine,
        image_frame: Affine,
        camera: Camera,
        saver: Saver,
        md: MotionData
    ) -> None:
    # md_approach_down = MotionData().with_dynamics(0.12).with_z_force_condition(7.0)
    # md_approach_up = MotionData().with_dynamics(0.6).with_z_force_condition(20.0)

    md_approach_down = MotionData().with_dynamics(0.3).with_z_force_condition(7.0)
    md_approach_up = MotionData().with_dynamics(1.0).with_z_force_condition(20.0)

    action_approch_affine = Affine(z=Config.approach_distance_from_pose)
    action_approach_frame = action_frame * action_approch_affine

    try:
        process_gripper = Process(target=gripper.move, args=(action.pose.d, ))
        process_gripper.start()

        robot.move_cartesian(Frames.gripper, action_approach_frame, md)

        process_gripper.join()
    except OSError:
        gripper.move(0.08)
        robot.move_cartesian(Frames.gripper, action_approach_frame, md)

    robot.move_relative_cartesian(Frames.gripper, action_approch_affine.inverse(), md_approach_down)

    if md_approach_down.did_break:
        robot.recover_from_errors()
        action.collision = True
        robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001), md_approach_up)

    action.final_pose = RobotPose(affine=(image_frame.inverse() * robot.current_pose(Frames.gripper)))

    first_grasp_successful = gripper.clamp()
    if first_grasp_successful:
        logger.info('Grasp successful at first.')
        robot.recover_from_errors()

        # Change here
        action_approch_affine = Affine(z=1.5*Config.approach_distance_from_pose)

        move_up_success = robot.move_relative_cartesian(Frames.gripper, action_approch_affine, md_approach_up)
        if move_up_success and not md_approach_up.did_break:
            if Config.mode is Mode.Measure and Config.take_after_images and not Config.release_in_other_bin:
                robot.move_cartesian(Frames.camera, image_frame, md)
                saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)

            if Config.file_objects:
                raise Exception('File objects not implemented!')

            if Config.release_during_grasp_action:
                move_to_release_success = move_to_release(robot, current_bin, md)
                if move_to_release_success:
                    if gripper.is_grasping():
                        action.reward = 1.0
                        action.final_pose.d = gripper.width()

                    if Config.mode is Mode.Perform:
                        gripper.release(action.final_pose.d + 0.002)  # [m]
                    else:
                        gripper.release(action.pose.d + 0.002)  # [m]
                        move_to_safety(robot, md_approach_up)

                    if Config.mode is Mode.Measure and Config.take_after_images and Config.release_in_other_bin:
                        robot.move_cartesian(Frames.camera, image_frame, md)
                        saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)
            else:
                if Config.mode is not Mode.Perform:
                    move_to_safety(robot, md_approach_up)

                if Config.mode is Mode.Measure and Config.take_after_images and Config.release_in_other_bin:
                    robot.move_cartesian(Frames.camera, image_frame, md)
                    saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)

        else:
            gripper.release(action.pose.d + 0.002)  # [m]

            robot.recover_from_errors()
            robot.move_relative_cartesian(Frames.gripper, action_approch_affine, md_approach_up)
            move_to_safety_success = move_to_safety(robot, md_approach_up)
            if not move_to_safety_success:
                robot.recover_from_errors()
                robot.recover_from_errors()
                move_to_safety(robot, md_approach_up)

            gripper.move(gripper.max_width)

            move_to_safety(robot, md_approach_up)
            if Config.mode is Mode.Measure and Config.take_after_images:
                robot.move_cartesian(Frames.camera, image_frame, md)
                saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)

    else:
        logger.info('Grasp not successful.')
        gripper.release(gripper.width() + 0.002)  # [m]

        robot.recover_from_errors()
        move_up_successful = robot.move_relative_cartesian(Frames.gripper, action_approch_affine, md_approach_up)

        if md_approach_up.did_break or not move_up_successful:
            gripper.release(action.pose.d)  # [m]

            robot.recover_from_errors()
            robot.move_relative_cartesian(Frames.gripper, action_approch_affine, md_approach_up)
            move_to_safety(robot, md_approach_up)

        if Config.mode is Mode.Measure and Config.take_after_images:
            robot.move_cartesian(Frames.camera, image_frame, md)
            saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)
Beispiel #12
0
def bin_picking():
    # agent = Agent()
    # agent.inference.current_type = 2

    # agent = AgentShift()

    agent = AgentPredict(prediction_model=Loader.get_model('cube-1', 'predict-bi-gen-5'))
    agent.grasp_inference.current_type = 2

    camera = Camera(camera_suffixes=Config.camera_suffixes)
    episode_history = EpisodeHistory()
    gripper = Gripper('172.16.0.2', Config.gripper_speed)
    robot = Robot('panda_arm', Config.general_dynamics_rel)
    saver = Saver(Config.database_url, Config.grasp_database)

    current_bin = Config.start_bin

    md = MotionData().with_dynamics(1.0)

    gripper.stop()

    robot.recover_from_errors()
    move_to_safety(robot, md)
    move_joints_successful = robot.move_joints(Frames.bin_joint_values[current_bin], md)

    if not move_joints_successful:
        gripper.move(0.07)

        robot.recover_from_errors()
        move_to_safety(robot, md)
        move_joints_successful = robot.move_joints(Frames.bin_joint_values[current_bin], md)

    if Config.mode is Mode.Measure and not Config.home_gripper:
        logger.warning('Want to measure without homing gripper?')
    elif Config.mode is Mode.Measure and Config.home_gripper:
        gripper.homing()

    move_to_safety(robot, md)
    gripper.homing()

    overall_start = time.time()

    for epoch in Config.epochs:
        while episode_history.total() < epoch.number_episodes:
            current_episode = Episode()
            current_selection_method = epoch.get_selection_method()
            if Config.mode in [Mode.Evaluate, Mode.Perform]:
                current_selection_method = epoch.get_selection_method_perform(episode_history.failed_grasps_since_last_success_in_bin(current_bin))

            start = time.time()

            if (not Config.predict_images) or agent.reinfer_next_time:
                robot.recover_from_errors()
                robot.move_joints(Frames.bin_joint_values[current_bin], md)

                b, c = random.choice(Config.overview_image_angles) if Config.lateral_overview_image else 0, 0
                camera_frame_overview = Frames.get_camera_frame(current_bin, b=b, c=c)
                if not Frames.is_camera_frame_safe(camera_frame_overview):
                    continue

                if Config.mode is Mode.Measure or Config.lateral_overview_image:
                    robot.move_cartesian(Frames.camera, camera_frame_overview, md)

                image_frame = robot.current_pose(Frames.camera)
                images = take_images(current_bin, camera, robot, image_frame=image_frame)

                if not Frames.is_gripper_frame_safe(robot.current_pose(Frames.gripper)):
                    logger.info('Image frame not safe!')
                    robot.recover_from_errors()
                    continue

            input_images = list(filter(lambda i: i.camera in Config.model_input_suffixes, images))

            # if episode_history.data:
            #     agent.successful_grasp_before = episode_history.data[-1].actions[0].reward > 0

            action = agent.infer(input_images, current_selection_method)
            action.images = {}
            action.save = True

            if Config.mode is Mode.Measure:
                saver.save_image(images, current_episode.id, 'v', action=action)

            if Config.mode is not Mode.Perform:
                saver.save_action_plan(action, current_episode.id)

            logger.info(f'Action: {action} at time {time.time() - overall_start:0.1f}')

            action.reward = 0.0
            action.collision = False
            action.bin = current_bin

            if Config.set_zero_reward:
                action.safe = -1

            if action.type == 'bin_empty':
                action.save = False

            elif action.type == 'new_image':
                action.save = False
                agent.reinfer_next_time = True

            if action.safe == 0:
                logger.warning('Action ignored.')
                action.save = False

            else:
                if Config.mode is Mode.Measure and Config.take_lateral_images and action.save:
                    md_lateral = MotionData().with_dynamics(1.0)

                    for b, c in Config.lateral_images_angles:
                        lateral_frame = Frames.get_camera_frame(current_bin, a=action.pose.a, b=b, c=c, reference_pose=image_frame)

                        if not Frames.is_camera_frame_safe(lateral_frame) or (b == 0.0 and c == 0.0):
                            continue

                        lateral_move_succss = robot.move_cartesian(Frames.camera, lateral_frame, md_lateral)  # Remove a for global b, c pose
                        if lateral_move_succss:
                            saver.save_image(take_images(current_bin, camera, robot), current_episode.id, f'lateral_b{b:0.3f}_c{c:0.3f}'.replace('.', '_'), action=action)

                if action.safe == 1 and action.type not in ['bin_empty', 'new_image']:
                    action_frame = Frames.get_action_pose(action_pose=action.pose, image_pose=image_frame)

                    if Config.mode is Mode.Measure and Config.take_direct_images:
                        robot.move_cartesian(Frames.camera, Affine(z=0.308) * Affine(b=0.0, c=0.0) * action_frame, md)
                        saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'direct', action=action)

                    if action.type == 'grasp':
                        grasp(robot, gripper, current_episode, current_bin, action, action_frame, image_frame, camera, saver, md)

                    elif action.type == 'shift':
                        old_reward_around_action = 0.0
                        shift(robot, gripper, current_episode, current_bin, action, action_frame, image_frame, camera, saver, md)
                        new_reward_around_action = 0.0

                        action.reward = new_reward_around_action - old_reward_around_action

                    elif action.type == 'place':
                        last_grasp = episode_history.data[-1].actions[0]
                        action.grasp_episode_id = episode_history.data[-1].id
                        place(robot, gripper, current_episode, current_bin, action, action_frame, last_grasp, image_frame, camera, saver, md)

                elif action.safe < 0:
                    logger.info('Pose not found.')
                    action.collision = True

                    if Config.take_after_images:
                        robot.move_cartesian(Frames.camera, image_frame, md)
                        saver.save_image(take_images(current_bin, camera, robot), current_episode.id, 'after', action=action)

            action.execution_time = time.time() - start
            logger.info(f'Time for action: {action.execution_time:0.3f} [s]')

            if action.save:
                current_episode.actions.append(action)

                if Config.mode is Mode.Measure:
                    logger.info(f'Save episode {current_episode.id}.')
                    saver.save_episode(current_episode)

            episode_history.append(current_episode)

            logger.info(f'Episodes (reward / done / total): {episode_history.total_reward(action_type="grasp")} / {episode_history.total()} / {sum(e.number_episodes for e in Config.epochs)}')
            logger.info(f'Last success: {episode_history.failed_grasps_since_last_success_in_bin(current_bin)} cycles ago.')

            # episode_history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

            # Change bin
            should_change_bin_for_evaluation = (Config.mode is Mode.Evaluate and episode_history.successful_grasps_in_bin(current_bin) == Config.change_bin_at_number_of_success_grasps)
            should_change_bin = (Config.mode is not Mode.Evaluate and (episode_history.failed_grasps_since_last_success_in_bin(current_bin) >= Config.change_bin_at_number_of_failed_grasps or action.type == 'bin_empty'))
            if should_change_bin_for_evaluation or (Config.change_bins and should_change_bin):
                if Config.mode is Mode.Evaluate:
                    pass

                current_bin = Frames.get_next_bin(current_bin)
                agent.reinfer_next_time = True
                logger.info('Switch to other bin.')

                if Config.mode is not Mode.Perform and Config.home_gripper:
                    gripper.homing()

            # Retrain model
            if Config.train_model and episode_history.total() > 0 and not episode_history.total() % Config.train_model_every_number_cycles:
                logger.warning('Retrain model!')
                with open('/tmp/training.txt', 'wb') as out:
                    p = Popen([sys.executable, str(Config.train_script)], stdout=out)
                    if not Config.train_async:
                        p.communicate()

    logger.info('Finished cleanly.')
Beispiel #13
0
    def grasp(self, current_episode: Episode, action_id: int, action: Action,
              action_frame: Affine, image_frame: Affine):
        md_approach_down = MotionData().with_dynamics(
            0.3).with_z_force_condition(7.0)
        md_approach_up = MotionData().with_dynamics(
            1.0).with_z_force_condition(20.0)

        action_approch_affine = Affine(z=Config.approach_distance_from_pose)
        action_approach_frame = action_frame * action_approch_affine

        try:
            process_gripper = Process(target=self.gripper.move,
                                      args=(action.pose.d, ))
            process_gripper.start()

            self.robot.move_cartesian(Frames.gripper, action_approach_frame,
                                      self.md)

            process_gripper.join()
        except OSError:
            self.gripper.move(0.08)
            self.robot.move_cartesian(Frames.gripper, action_approach_frame,
                                      self.md)

        self.robot.move_relative_cartesian(Frames.gripper,
                                           action_approch_affine.inverse(),
                                           md_approach_down)

        if md_approach_down.did_break:
            self.robot.recover_from_errors()
            action.collision = True
            self.robot.move_relative_cartesian(Frames.gripper, Affine(z=0.001),
                                               md_approach_up)

        action.final_pose = RobotPose(
            affine=(image_frame.inverse() *
                    self.robot.current_pose(Frames.gripper)))

        first_grasp_successful = self.gripper.clamp()
        if first_grasp_successful:
            logger.info('Grasp successful at first.')
            self.robot.recover_from_errors()

            action_approch_affine = Affine(
                z=Config.approach_distance_from_pose)

            move_up_success = self.robot.move_relative_cartesian(
                Frames.gripper, action_approch_affine, md_approach_up)
            if move_up_success and not md_approach_up.did_break:
                if Config.mode is Mode.Measure and Config.take_after_images and not Config.release_in_other_bin:
                    self.robot.move_cartesian(Frames.camera, image_frame,
                                              self.md)
                    self.last_after_images = self.take_images()
                    self.saver.save_image(self.last_after_images,
                                          current_episode.id,
                                          action_id,
                                          'after',
                                          action=action)

                if Config.release_during_grasp_action:
                    move_to_release_success = self.move_to_release(self.md)
                    if move_to_release_success:
                        if self.gripper.is_grasping():
                            action.reward = 1.0
                            action.final_pose.d = self.gripper.width()

                        if Config.mode is Mode.Perform:
                            self.gripper.release(action.final_pose.d +
                                                 0.005)  # [m]
                        else:
                            self.gripper.release(action.pose.d + 0.005)  # [m]
                            self.move_to_safety(md_approach_up)

                        if Config.mode is Mode.Measure and Config.take_after_images and Config.release_in_other_bin:
                            self.robot.move_cartesian(Frames.camera,
                                                      image_frame, self.md)
                            self.last_after_images = self.take_images()
                            self.saver.save_image(self.last_after_images,
                                                  current_episode.id,
                                                  action_id,
                                                  'after',
                                                  action=action)
                else:
                    if Config.mode is not Mode.Perform:
                        self.move_to_safety(md_approach_up)

                    if self.gripper.is_grasping():
                        action.reward = 1.0
                        action.final_pose.d = self.gripper.width()

                    if Config.mode is Mode.Measure and Config.take_after_images:
                        self.robot.move_cartesian(Frames.camera, image_frame,
                                                  self.md)
                        self.last_after_images = self.take_images()
                        self.saver.save_image(self.last_after_images,
                                              current_episode.id,
                                              action_id,
                                              'after',
                                              action=action)

            else:
                self.gripper.release(action.pose.d + 0.002)  # [m]

                self.robot.recover_from_errors()
                self.robot.move_relative_cartesian(Frames.gripper,
                                                   action_approch_affine,
                                                   md_approach_up)
                move_to_safety_success = self.move_to_safety(md_approach_up)
                if not move_to_safety_success:
                    self.robot.recover_from_errors()
                    self.robot.recover_from_errors()
                    self.move_to_safety(md_approach_up)

                self.gripper.move(self.gripper.max_width)

                self.move_to_safety(md_approach_up)
                if Config.mode is Mode.Measure and Config.take_after_images:
                    self.robot.move_cartesian(Frames.camera, image_frame,
                                              self.md)
                    self.last_after_images = self.take_images()
                    self.saver.save_image(self.last_after_images,
                                          current_episode.id,
                                          action_id,
                                          'after',
                                          action=action)

        else:
            logger.info('Grasp not successful.')
            self.gripper.release(self.gripper.width() + 0.002)  # [m]

            self.robot.recover_from_errors()
            move_up_successful = self.robot.move_relative_cartesian(
                Frames.gripper, action_approch_affine, md_approach_up)

            if md_approach_up.did_break or not move_up_successful:
                self.gripper.release(action.pose.d)  # [m]

                self.robot.recover_from_errors()
                self.robot.move_relative_cartesian(Frames.gripper,
                                                   action_approch_affine,
                                                   md_approach_up)
                self.move_to_safety(md_approach_up)

            if Config.mode is Mode.Measure and Config.take_after_images:
                self.robot.move_cartesian(Frames.camera, image_frame, self.md)
                self.last_after_images = self.take_images()
                self.saver.save_image(self.last_after_images,
                                      current_episode.id,
                                      action_id,
                                      'after',
                                      action=action)