Beispiel #1
0
def check_affine(f, *nu_inputs):
    types = ",".join(["{%s,%s}" % (x.dtype, x.ndim) for x in nu_inputs])
    cgt.utils.colorprint(cgt.utils.Color.YELLOW,
                         "Testing %s(%s)\n" % (f.__name__, types))
    sy_inputs = map(tensor_like, nu_inputs)
    for (i, sy) in enumerate(sy_inputs):
        sy.name = "x%i" % i

    sy_result = f(*sy_inputs)

    def maybeprint(msg):
        if DISPLAY: print msg

    maybeprint("Function:")
    if DISPLAY: cgt.print_tree([sy_result])

    f_cgt = cgt.function(sy_inputs, sy_result)
    sy_grads = cgt.grad(sy_result, sy_inputs)
    gradf_cgt = cgt.function(sy_inputs, sy_grads)

    sy_result_simple = core.simplify([sy_result])
    sy_grads_simple = core.simplify(sy_grads)

    maybeprint("Gradient:")
    if DISPLAY: cgt.print_tree(sy_grads)

    maybeprint("Gradient after simplification:")
    if DISPLAY: cgt.print_tree(sy_grads_simple)

    out_true = f(*nu_inputs)
    out_cgt = f_cgt(*nu_inputs)

    grads_true = gradients_affine(f_cgt,
                                  nu_inputs,
                                  h=1e-4 if "max" in f.__name__ else 1e-1)
    grads_cgt = gradf_cgt(*nu_inputs)

    rtol = {"single": 1e-3, "double": 1e-5}[cgt.get_precision()]
    np.testing.assert_allclose(out_cgt, out_true, rtol=rtol)

    for (g_cgt, g_true) in zip(grads_cgt, grads_true):
        np.testing.assert_allclose(g_cgt, g_true, rtol=rtol)

    result_count = cgt.count_nodes(sy_result_simple)
    grad_count = cgt.count_nodes(sy_grads_simple)
    maybeprint("Result before: %i. after: %i" %
               (cgt.count_nodes([sy_result]), result_count))
    maybeprint("Grad before: %i. after: %i" %
               (cgt.count_nodes(sy_grads), grad_count))

    PROB2RESULT[f.__name__] = {}
    PROB2RESULT[f.__name__]["fn"] = result_count
    PROB2RESULT[f.__name__]["grad"] = grad_count
Beispiel #2
0
def check_affine(f, *nu_inputs):
    types = ",".join(["{%s,%s}" % (x.dtype, x.ndim) for x in nu_inputs])
    cgt.utils.colorprint(cgt.utils.Color.YELLOW, "Testing %s(%s)\n" % (f.__name__, types))
    sy_inputs = map(tensor_like, nu_inputs)
    for (i, sy) in enumerate(sy_inputs):
        sy.name = "x%i" % i

    sy_result = f(*sy_inputs)

    def maybeprint(msg):
        if DISPLAY:
            print msg

    maybeprint("Function:")
    if DISPLAY:
        cgt.print_tree([sy_result])

    f_cgt = cgt.function(sy_inputs, sy_result)
    sy_grads = cgt.grad(sy_result, sy_inputs)
    gradf_cgt = cgt.function(sy_inputs, sy_grads)

    sy_result_simple = core.simplify([sy_result])
    sy_grads_simple = core.simplify(sy_grads)

    maybeprint("Gradient:")
    if DISPLAY:
        cgt.print_tree(sy_grads)

    maybeprint("Gradient after simplification:")
    if DISPLAY:
        cgt.print_tree(sy_grads_simple)

    out_true = f(*nu_inputs)
    out_cgt = f_cgt(*nu_inputs)

    grads_true = gradients_affine(f_cgt, nu_inputs, h=1e-4 if "max" in f.__name__ else 1e-1)
    grads_cgt = gradf_cgt(*nu_inputs)

    rtol = {"single": 1e-3, "double": 1e-5}[cgt.get_precision()]
    np.testing.assert_allclose(out_cgt, out_true, rtol=rtol)

    for (g_cgt, g_true) in zip(grads_cgt, grads_true):
        np.testing.assert_allclose(g_cgt, g_true, rtol=rtol)

    result_count = cgt.count_nodes(sy_result_simple)
    grad_count = cgt.count_nodes(sy_grads_simple)
    maybeprint("Result before: %i. after: %i" % (cgt.count_nodes([sy_result]), result_count))
    maybeprint("Grad before: %i. after: %i" % (cgt.count_nodes(sy_grads), grad_count))

    PROB2RESULT[f.__name__] = {}
    PROB2RESULT[f.__name__]["fn"] = result_count
    PROB2RESULT[f.__name__]["grad"] = grad_count
Beispiel #3
0
    X_tnk = cgt.tensor3("X")

    cell = gru.GRUCell([dim_x], mem_size)

    Minit_nk = cgt.zeros((X_tnk.shape[0], X_tnk.shape[1]), cgt.floatX)
    M = Minit_nk

    for t in xrange(horizon):
        M = cell(M, X_tnk[t])

    # cgt.print_tree(M)
    print "simplifying..."
    M_simp = cgt.simplify([M])
    print "done"
    # cgt.print_tree(M_simp)
    print "fn before:", cgt.count_nodes(M)
    print "fn after:", cgt.count_nodes(M_simp)

    gs = cgt.grad(cgt.sum(M), cell.params())
    print "grad before", cgt.count_nodes(gs)
    g_simp = cgt.simplify(gs)
    print "grad after", cgt.count_nodes(g_simp)

    # M = cgt.simplify(M)
    elapsed.append(time() - tstart)

import matplotlib.pyplot as plt
plt.plot(horizons, elapsed, 'x-')
plt.show()
Beispiel #4
0
    X_tnk = cgt.tensor3("X")

    cell = gru.GRUCell([dim_x], mem_size)

    Minit_nk = cgt.zeros((X_tnk.shape[0], X_tnk.shape[1]),cgt.floatX)
    M = Minit_nk

    for t in xrange(horizon):
        M = cell(M, X_tnk[t])

    # cgt.print_tree(M)
    print "simplifying..."
    M_simp = cgt.simplify([M])
    print "done"
    # cgt.print_tree(M_simp)
    print "fn before:",cgt.count_nodes(M)
    print "fn after:",cgt.count_nodes(M_simp)

    gs = cgt.grad(cgt.sum(M), cell.params())
    print "grad before", cgt.count_nodes(gs)
    g_simp = cgt.simplify(gs)
    print "grad after",cgt.count_nodes(g_simp)

    # M = cgt.simplify(M)
    elapsed.append(time()-tstart)

import matplotlib.pyplot as plt
plt.plot(horizons,elapsed,'x-')
plt.show()