Beispiel #1
0
    def forward_cpu(self, inputs):
        self.retain_inputs((1, 2))
        self._bottom_data_shape = inputs[0].shape

        bottom_data, bottom_rois, bottom_roi_indices = inputs
        channels, height, width = bottom_data.shape[1:]
        n_rois = bottom_rois.shape[0]
        top_data = numpy.empty((n_rois, channels, self.outh, self.outw),
                               dtype=bottom_data.dtype)
        self.argmax_data = numpy.empty(top_data.shape, numpy.int32)

        pooled_width, pooled_height = self.outw, self.outh
        spatial_scale = self.spatial_scale

        for i in six.moves.range(top_data.size):
            pw = i % pooled_width
            ph = int(i / pooled_width) % pooled_height
            c = int(i / pooled_width / pooled_height) % channels
            n = int(i / pooled_width / pooled_height / channels)

            roi_batch_ind = bottom_roi_indices[n]
            roi_start_h = bottom_rois[n, 0] * spatial_scale
            roi_start_w = bottom_rois[n, 1] * spatial_scale
            roi_end_h = bottom_rois[n, 2] * spatial_scale
            roi_end_w = bottom_rois[n, 3] * spatial_scale

            roi_width = max(roi_end_w - roi_start_w, 1.)
            roi_height = max(roi_end_h - roi_start_h, 1.)
            bin_size_h = roi_height / pooled_height
            bin_size_w = roi_width / pooled_width

            if self.sampling_ratio[0] is None:
                roi_bin_grid_h = int(numpy.ceil(roi_height / pooled_height))
            else:
                roi_bin_grid_h = self.sampling_ratio[0]
            if self.sampling_ratio[1] is None:
                roi_bin_grid_w = int(numpy.ceil(roi_width / pooled_width))
            else:
                roi_bin_grid_w = self.sampling_ratio[1]

            max_val = -numpy.inf
            max_index = -1
            for iy in six.moves.range(roi_bin_grid_h):
                y = roi_start_h + ph * bin_size_h + \
                    (iy + .5) * bin_size_h / roi_bin_grid_h
                y, y_low, y_high = _get_bounds(y, height)
                if y is None or y_low is None or y_high is None:
                    continue
                for ix in six.moves.range(roi_bin_grid_w):
                    x = roi_start_w + pw * bin_size_w + \
                        (ix + .5) * bin_size_w / roi_bin_grid_w
                    x, x_low, x_high = _get_bounds(x, width)
                    if x is None or x_low is None or x_high is None:
                        continue
                    # bilinear interpolation {{

                    w1, w2, w3, w4 = _get_bilinear_interp_params(
                        y, x, y_low, x_low, y_high, x_high)

                    tmp_val = 0.
                    if w1 > 0 and y_low >= 0 and x_low >= 0:
                        v1 = bottom_data[roi_batch_ind, c, y_low, x_low]
                        tmp_val += w1 * v1

                    if w2 > 0 and y_low >= 0 and x_high <= width - 1:
                        v2 = bottom_data[roi_batch_ind, c, y_low, x_high]
                        tmp_val += w2 * v2

                    if w3 > 0 and y_high <= height - 1 and x_low >= 0:
                        v3 = bottom_data[roi_batch_ind, c, y_high, x_low]
                        tmp_val += w3 * v3

                    if w4 > 0 and y_high <= height - 1 and x_high <= width - 1:
                        v4 = bottom_data[roi_batch_ind, c, y_high, x_high]
                        tmp_val += w4 * v4

                    tmp_index = iy * roi_bin_grid_w + ix
                    if tmp_val > max_val:
                        max_val = tmp_val
                        max_index = tmp_index

                    # }}
            top_data[n, c, ph, pw] = max_val
            self.argmax_data[n, c, ph, pw] = max_index

        return top_data,
Beispiel #2
0
    def backward_cpu(self, inputs, gy):
        bottom_rois, bottom_roi_indices = inputs[1:]
        channels, height, width = self._bottom_data_shape[1:]
        bottom_diff = numpy.zeros(self._bottom_data_shape, gy[0].dtype)

        spatial_scale = self.spatial_scale
        pooled_height = self.outh
        pooled_width = self.outw
        top_diff = gy[0]

        for i in six.moves.range(top_diff.size):
            pw = i % pooled_width
            ph = int(i / pooled_width) % pooled_height
            c = int(i / pooled_width / pooled_height) % channels
            n = int(i / pooled_width / pooled_height / channels)

            roi_batch_ind = bottom_roi_indices[n]
            roi_start_h = bottom_rois[n, 0] * spatial_scale
            roi_start_w = bottom_rois[n, 1] * spatial_scale
            roi_end_h = bottom_rois[n, 2] * spatial_scale
            roi_end_w = bottom_rois[n, 3] * spatial_scale

            roi_width = max(roi_end_w - roi_start_w, 1.)
            roi_height = max(roi_end_h - roi_start_h, 1.)
            bin_size_h = roi_height / pooled_height
            bin_size_w = roi_width / pooled_width

            top_diff_this_bin = top_diff[n, c, ph, pw]
            max_index = self.argmax_data[n, c, ph, pw]

            if max_index != -1:
                if self.sampling_ratio[0] is None:
                    roi_bin_grid_h = numpy.ceil(roi_height / pooled_height)
                else:
                    roi_bin_grid_h = self.sampling_ratio[0]
                if self.sampling_ratio[1] is None:
                    roi_bin_grid_w = numpy.ceil(roi_width / pooled_width)
                else:
                    roi_bin_grid_w = self.sampling_ratio[1]

                iy = int(max_index / roi_bin_grid_w)
                ix = max_index % roi_bin_grid_w

                y = roi_start_h + ph * bin_size_h + \
                    (iy + .5) * bin_size_h / roi_bin_grid_h
                x = roi_start_w + pw * bin_size_w + \
                    (ix + .5) * bin_size_w / roi_bin_grid_w

                # bilinear_interpolation_gradient {{

                y, y_low, y_high = _get_bounds(y, height)
                if y is None or y_low is None or y_high is None:
                    continue
                x, x_low, x_high = _get_bounds(x, width)
                if x is None or x_low is None or x_high is None:
                    continue
                w1, w2, w3, w4 = _get_bilinear_interp_params(
                    y, x, y_low, x_low, y_high, x_high)

                if w1 > 0 and y_low >= 0 and x_low >= 0:
                    g1 = top_diff_this_bin * w1
                    bottom_diff[roi_batch_ind, c, y_low, x_low] += g1

                if w2 > 0 and y_low >= 0 and x_high <= width - 1:
                    g2 = top_diff_this_bin * w2
                    bottom_diff[roi_batch_ind, c, y_low, x_high] += g2

                if w3 > 0 and y_high <= height - 1 and x_low >= 0:
                    g3 = top_diff_this_bin * w3
                    bottom_diff[roi_batch_ind, c, y_high, x_low] += g3

                if w4 > 0 and y_high <= height - 1 and x_high <= width - 1:
                    g4 = top_diff_this_bin * w4
                    bottom_diff[roi_batch_ind, c, y_high, x_high] += g4

                # }}

        return bottom_diff, None, None
Beispiel #3
0
    def forward_cpu(self, inputs):
        self.retain_inputs((1, 2))
        self._bottom_data_shape = inputs[0].shape

        bottom_data, bottom_rois, bottom_roi_indices = inputs
        channels, height, width = bottom_data.shape[1:]
        n_rois = bottom_rois.shape[0]
        top_data = numpy.empty((n_rois, channels, self.outh,
                                self.outw), dtype=bottom_data.dtype)
        self.argmax_data = numpy.empty(top_data.shape, numpy.int32)

        pooled_width, pooled_height = self.outw, self.outh
        spatial_scale = self.spatial_scale

        for i in six.moves.range(top_data.size):
            pw = i % pooled_width
            ph = int(i / pooled_width) % pooled_height
            c = int(i / pooled_width / pooled_height) % channels
            n = int(i / pooled_width / pooled_height / channels)

            roi_batch_ind = bottom_roi_indices[n]
            roi_start_h = bottom_rois[n, 0] * spatial_scale
            roi_start_w = bottom_rois[n, 1] * spatial_scale
            roi_end_h = bottom_rois[n, 2] * spatial_scale
            roi_end_w = bottom_rois[n, 3] * spatial_scale

            roi_width = max(roi_end_w - roi_start_w, 1.)
            roi_height = max(roi_end_h - roi_start_h, 1.)
            bin_size_h = roi_height / pooled_height
            bin_size_w = roi_width / pooled_width

            if self.sampling_ratio[0] is None:
                roi_bin_grid_h = int(numpy.ceil(roi_height / pooled_height))
            else:
                roi_bin_grid_h = self.sampling_ratio[0]
            if self.sampling_ratio[1] is None:
                roi_bin_grid_w = int(numpy.ceil(roi_width / pooled_width))
            else:
                roi_bin_grid_w = self.sampling_ratio[1]

            max_val = - numpy.inf
            max_index = -1
            for iy in six.moves.range(roi_bin_grid_h):
                y = roi_start_h + ph * bin_size_h + \
                    (iy + .5) * bin_size_h / roi_bin_grid_h
                y, y_low, y_high = _get_bounds(y, height)
                if y is None or y_low is None or y_high is None:
                    continue
                for ix in six.moves.range(roi_bin_grid_w):
                    x = roi_start_w + pw * bin_size_w + \
                        (ix + .5) * bin_size_w / roi_bin_grid_w
                    x, x_low, x_high = _get_bounds(x, width)
                    if x is None or x_low is None or x_high is None:
                        continue
                    # bilinear interpolation {{

                    w1, w2, w3, w4 = _get_bilinear_interp_params(
                        y, x, y_low, x_low, y_high, x_high)

                    v1 = bottom_data[roi_batch_ind, c, y_low, x_low]
                    v2 = bottom_data[roi_batch_ind, c, y_low, x_high]
                    v3 = bottom_data[roi_batch_ind, c, y_high, x_low]
                    v4 = bottom_data[roi_batch_ind, c, y_high, x_high]

                    tmp_val = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4
                    tmp_index = iy * roi_bin_grid_w + ix
                    if tmp_val > max_val:
                        max_val = tmp_val
                        max_index = tmp_index

                    # }}
            top_data[n, c, ph, pw] = max_val
            self.argmax_data[n, c, ph, pw] = max_index

        return top_data,
Beispiel #4
0
    def forward_cpu(self, inputs):
        self.retain_inputs((1, 2))
        self._bottom_data_shape = inputs[0].shape

        bottom_data, bottom_rois, bottom_roi_indices = inputs
        channels, height, width = bottom_data.shape[1:]
        n_rois = bottom_rois.shape[0]
        top_data = numpy.empty((n_rois, channels, self.outh, self.outw),
                               dtype=bottom_data.dtype)
        self.argmax_data = numpy.zeros(top_data.shape, numpy.int32)

        pooled_width, pooled_height = self.outw, self.outh
        spatial_scale = self.spatial_scale

        for i in six.moves.range(top_data.size):
            pw = i % pooled_width
            ph = int(i / pooled_width) % pooled_height
            c = int(i / pooled_width / pooled_height) % channels
            n = int(i / pooled_width / pooled_height / channels)

            roi_batch_ind = bottom_roi_indices[n]
            roi_start_h = bottom_rois[n, 0] * spatial_scale
            roi_start_w = bottom_rois[n, 1] * spatial_scale
            roi_end_h = bottom_rois[n, 2] * spatial_scale
            roi_end_w = bottom_rois[n, 3] * spatial_scale

            roi_width = max(roi_end_w - roi_start_w, 1.)
            roi_height = max(roi_end_h - roi_start_h, 1.)
            bin_size_h = roi_height / pooled_height
            bin_size_w = roi_width / pooled_width

            if self.sampling_ratio[0] is None:
                roi_bin_grid_h = numpy.ceil(roi_height / pooled_height)
            else:
                roi_bin_grid_h = self.sampling_ratio[0]
            if self.sampling_ratio[1] is None:
                roi_bin_grid_w = numpy.ceil(roi_width / pooled_width)
            else:
                roi_bin_grid_w = self.sampling_ratio[1]

            max_val = None
            max_index = None
            iy = 0
            while iy < roi_bin_grid_h:
                y = roi_start_h + ph * bin_size_h + \
                    (iy + .5) * bin_size_h / roi_bin_grid_h
                ix = 0
                y, y_low, y_high = _get_bounds(y, height)
                if y is None or y_low is None or y_high is None:
                    continue
                while ix < roi_bin_grid_w:
                    x = roi_start_w + pw * bin_size_w + \
                        (ix + .5) * bin_size_w / roi_bin_grid_w
                    x, x_low, x_high = _get_bounds(x, width)
                    if x is None or x_low is None or x_high is None:
                        continue
                    # bilinear interpolation {{

                    w1, w2, w3, w4 = _get_bilinear_interp_params(
                        y, x, y_low, x_low, y_high, x_high)

                    v1 = bottom_data[roi_batch_ind, c, y_low, x_low]
                    v2 = bottom_data[roi_batch_ind, c, y_low, x_high]
                    v3 = bottom_data[roi_batch_ind, c, y_high, x_low]
                    v4 = bottom_data[roi_batch_ind, c, y_high, x_high]

                    tmp_val = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4
                    tmp_index = iy * roi_bin_grid_w + ix
                    if max_val is None or max_index is None \
                            or (tmp_val > max_val):
                        max_val = tmp_val
                        max_index = tmp_index

                    # }}

                    ix += 1
                iy += 1

            top_data[n, c, ph, pw] = max_val
            self.argmax_data[n, c, ph, pw] = max_index

        return top_data,
Beispiel #5
0
    def backward_cpu(self, inputs, gy):
        bottom_rois, bottom_roi_indices = inputs[1:]
        channels, height, width = self._bottom_data_shape[1:]
        bottom_diff = numpy.zeros(self._bottom_data_shape, gy[0].dtype)

        spatial_scale = self.spatial_scale
        pooled_height = self.outh
        pooled_width = self.outw
        top_diff = gy[0]

        for i in six.moves.range(top_diff.size):
            pw = i % pooled_width
            ph = int(i / pooled_width) % pooled_height
            c = int(i / pooled_width / pooled_height) % channels
            n = int(i / pooled_width / pooled_height / channels)

            roi_batch_ind = bottom_roi_indices[n]
            roi_start_h = bottom_rois[n, 0] * spatial_scale
            roi_start_w = bottom_rois[n, 1] * spatial_scale
            roi_end_h = bottom_rois[n, 2] * spatial_scale
            roi_end_w = bottom_rois[n, 3] * spatial_scale

            roi_width = max(roi_end_w - roi_start_w, 1.)
            roi_height = max(roi_end_h - roi_start_h, 1.)
            bin_size_h = roi_height / pooled_height
            bin_size_w = roi_width / pooled_width

            top_diff_this_bin = top_diff[n, c, ph, pw]
            max_index = self.argmax_data[n, c, ph, pw]

            if max_index != -1:
                if self.sampling_ratio[0] is None:
                    roi_bin_grid_h = numpy.ceil(roi_height / pooled_height)
                else:
                    roi_bin_grid_h = self.sampling_ratio[0]
                if self.sampling_ratio[1] is None:
                    roi_bin_grid_w = numpy.ceil(roi_width / pooled_width)
                else:
                    roi_bin_grid_w = self.sampling_ratio[1]

                iy = int(max_index / roi_bin_grid_w)
                ix = max_index % roi_bin_grid_w

                y = roi_start_h + ph * bin_size_h + \
                    (iy + .5) * bin_size_h / roi_bin_grid_h
                x = roi_start_w + pw * bin_size_w + \
                    (ix + .5) * bin_size_w / roi_bin_grid_w

                # bilinear_interpolation_gradient {{

                y, y_low, y_high = _get_bounds(y, height)
                if y is None or y_low is None or y_high is None:
                    continue
                x, x_low, x_high = _get_bounds(x, width)
                if x is None or x_low is None or x_high is None:
                    continue
                w1, w2, w3, w4 = _get_bilinear_interp_params(
                    y, x, y_low, x_low, y_high, x_high)

                g1 = top_diff_this_bin * w1
                g2 = top_diff_this_bin * w2
                g3 = top_diff_this_bin * w3
                g4 = top_diff_this_bin * w4

                if (x_low >= 0 and x_high >= 0 and
                        y_low >= 0 and y_high >= 0):
                    bottom_diff[roi_batch_ind, c, y_low, x_low] += g1
                    bottom_diff[roi_batch_ind, c, y_low, x_high] += g2
                    bottom_diff[roi_batch_ind, c, y_high, x_low] += g3
                    bottom_diff[roi_batch_ind, c, y_high, x_high] += g4

                # }}

        return bottom_diff, None, None