Beispiel #1
0
def simul(isodir):
    params = parameters()
    eps = 0.01
    #feh
    params.set("m0y", 0.9, -1, 1, True)
    params.set("m0cphi", -0.001, -pi / 2 + eps, 0, True)
    params.set("m0cr", 0.01, 0, 2, True)
    params.set("m1y", -0.9, -1, 1, True)
    params.set("m1cphi", 1.67, pi / 2 + eps, pi, True)
    params.set("m1cr", 1.06, 0, 2, True)

    params.set("sigma", 0.6, 0, 1, True)
    #sfr
    params.set("s0y", 1.11, 0.0, 2, True)
    params.set("s0cphi", 0.0003, 0, pi / 2 - eps, True)
    params.set("s0cr", 1, 0, 1, True)
    params.set("s1x", 9.9, 8, 10, True)
    params.set("s1y", 5.9, 1.5, 10, True)
    params.set("s1cphi", 4.61, pi / 2 + eps, pi * 3 / 2 - eps, True)
    params.set("s1cr", 0.49, 0, 0.5, True)
    params.set("s2y", 0.89, 0, 2, True)
    params.set("s2cphi", 3.04, pi / 2 + eps, pi - eps, True)
    params.set("s2cr", 0.001, 0, 2, True)
    if len(sys.argv) == 2:  #run with a param to start from the beginning
        params.save()
    params.load()

    data = iso.readfits(isodir + "/datarr.fits")
    isos = iso.readisos(isodir)
    t = utils.frange(8, 10.25, 0.001)

    def f(par):
        params.setvalues(par)
        w = utils.calculateweights(t, sfr(t, params))
        #isow=iso.getisosweights(w,10.**t,metallicity(t,params),isos)
        isow = iso.getisosweights_gauss(w, 10.**t, metallicity(t, params),
                                        isos, params.sigma)
        m = iso.computeCMD(isow, isos)
        m = utils.normalize(m, sum(data.flat))
        return utils.loglikelihood(m, data)

    d = numarray.maximum(data, 1e-20)
    llhC = sum((d * numarray.log(d)).flat)

    def b(par, value, iter):
        params.setvalues(par)
        params.save()
        print "henry:", value, "tom:", 2.0 * (value + llhC), "iter:", iter

    optimization.minmax(optimization.fmin_simplex, f, params.getvalues(),
                        params.min(), params.max(), b)
Beispiel #2
0
def simul(isodir):
    params=parameters()
    eps=0.01
    #feh
    params.set("m0y"   ,0.9, -1,1,True)
    params.set("m0cphi",-0.001,  -pi/2+eps,0,True)
    params.set("m0cr"  ,0.01,  0,2,True)
    params.set("m1y"   ,-0.9,  -1,1,True)
    params.set("m1cphi",1.67,  pi/2+eps,pi,True)
    params.set("m1cr"  ,1.06,  0,2,True)

    params.set("sigma" ,0.6,  0,1, True)
    #sfr
    params.set("s0y"   ,1.11,   0.0,2,True)
    params.set("s0cphi",0.0003,   0,pi/2-eps,True)
    params.set("s0cr"  ,1,   0,1,True)
    params.set("s1x"   ,9.9,   8,10,True)
    params.set("s1y"   ,5.9, 1.5,10,True)
    params.set("s1cphi",4.61,   pi/2+eps,pi*3/2-eps,True)
    params.set("s1cr"  ,0.49,   0,0.5,True)
    params.set("s2y"   ,0.89, 0,2,True)
    params.set("s2cphi",3.04,   pi/2+eps,pi-eps,True)
    params.set("s2cr"  ,0.001,   0,2,True)
    if len(sys.argv) == 2: #run with a param to start from the beginning
        params.save()
    params.load()

    data=iso.readfits(isodir+"/datarr.fits")
    isos = iso.readisos(isodir)
    t=utils.frange(8,10.25,0.001)
    def f(par):
        params.setvalues(par)
        w=utils.calculateweights(t,sfr(t,params))
        #isow=iso.getisosweights(w,10.**t,metallicity(t,params),isos)
        isow=iso.getisosweights_gauss(w,10.**t,metallicity(t,params),isos,
                params.sigma)
        m=iso.computeCMD(isow,isos)
        m=utils.normalize(m,sum(data.flat))
        return utils.loglikelihood(m,data)

    d = numarray.maximum(data,1e-20)
    llhC=sum( (d*numarray.log(d)).flat )
    def b(par,value,iter):
        params.setvalues(par)
        params.save()
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter

    optimization.minmax(optimization.fmin_simplex,f,
            params.getvalues(),params.min(),params.max(),b)
Beispiel #3
0
import numpy as numarray

from chemev import iso, utils, optimization

if not optimization.have_mcmc:
    print "PyMC not installed correctly. Check the PYTHONPATH."
    print "PYTHONPATH=", sys.path
    sys.exit()

print "reading isochrones"
#isodir="m31iso"
#isodir="m117halo"
isodir = "../../isochrones/117/halo"
data = iso.readfits(isodir + "/datarr.fits")
isos = iso.readisos(isodir)

print "fitting"
pars = eval(file("bestfit117").readline())

ndata = sum(data.flat)
d = numarray.maximum(data, 1e-20)
llhC = sum((d * numarray.log(d)).flat)
iter = 0
out = file("mcmc.out", "w")


def f(params):
    global iter
    m = iso.computeCMD(params, isos)
    C = ndata / sum(m.flat)
Beispiel #4
0
def simul(isodir):
    params = parameters()
    eps = 0.01
    #feh
    params.set("m0y", 0.9, -1, 1, True)
    params.set("m0cphi", -0.001, -pi / 2 + eps, 0, True)
    params.set("m0cr", 0.01, 0, 2, True)
    params.set("m1y", -0.9, -1, 1, True)
    params.set("m1cphi", 1.67, pi / 2 + eps, pi, True)
    params.set("m1cr", 1.06, 0, 2, True)

    #    params.set("sigma" ,0.6,  0,1, True)
    #sfr
    params.set("s0y", 1.11, 0.0, 2, True)
    params.set("s0cphi", 0.0003, 0, pi / 2 - eps, True)
    params.set("s0cr", 1, 0, 1, True)
    params.set("s1x", 9.9, 8, 10, True)
    params.set("s1y", 5.9, 1.5, 10, True)
    params.set("s1cphi", 4.61, pi / 2 + eps, pi * 3 / 2 - eps, True)
    params.set("s1cr", 0.49, 0, 0.5, True)
    params.set("s2y", 0.89, 0, 2, True)
    params.set("s2cphi", 3.04, pi / 2 + eps, pi - eps, True)
    params.set("s2cr", 0.001, 0, 2, True)
    #if len(sys.argv) == 2: #run with a param to start from the beginning
    params.save()
    params.load()

    data = iso.readfits(isodir + "/datarr.fits")
    isos = iso.readisos(isodir)
    t = utils.frange(8, 10.25, 0.001)
    ndata = sum(data.flat)

    def f(par):
        params.setvalues(par)
        w = utils.calculateweights(t, sfr(t, params))
        isow = iso.getisosweights(w, 10.**t, metallicity(t, params), isos)
        #isow=iso.getisosweights_gauss(w,10.**t,metallicity(t,params),isos,
        #        params.sigma)
        m = iso.computeCMD(isow, isos)
        m = utils.normalize(m, ndata)
        return utils.loglikelihood(m, data)

    d = maximum(data, 1e-20)
    llhC = sum((d * log(d)).flat)

    def b(par, value, iter):
        params.setvalues(par)
        params.save()
        print "henry:", value, "tom:", 2.0 * (value + llhC), "iter:", iter

    #always try a different initial guess:
    params.randomize()

    sfr_initial = sfr(t, params)
    met_initial = metallicity(t, params)

    print "start"

    #pars=optimization.minmax(optimization.fmin_bfgs,
    pars = optimization.minmax(
        optimization.fmin_de,
        #pars=optimization.minmax(optimization.fmin_anneal,
        f,
        params.getvalues(),
        params.min(),
        params.max(),
        callback=b,
        iter=100,
        #logistics = optimization.ReflectLogistics)
        logistics=optimization.ExpLogistics)
Beispiel #5
0
def simul(isodir):
    params=parameters()
    eps=0.01
    #feh
    params.set("m0y"   ,0.9, -1,1,True)
    params.set("m0cphi",-0.001,  -pi/2+eps,0,True)
    params.set("m0cr"  ,0.01,  0,2,True)
    params.set("m1y"   ,-0.9,  -1,1,True)
    params.set("m1cphi",1.67,  pi/2+eps,pi,True)
    params.set("m1cr"  ,1.06,  0,2,True)

#    params.set("sigma" ,0.6,  0,1, True)
    #sfr
    params.set("s0y"   ,1.11,   0.0,2,True)
    params.set("s0cphi",0.0003,   0,pi/2-eps,True)
    params.set("s0cr"  ,1,   0,1,True)
    params.set("s1x"   ,9.9,   8,10,True)
    params.set("s1y"   ,5.9, 1.5,10,True)
    params.set("s1cphi",4.61,   pi/2+eps,pi*3/2-eps,True)
    params.set("s1cr"  ,0.49,   0,0.5,True)
    params.set("s2y"   ,0.89, 0,2,True)
    params.set("s2cphi",3.04,   pi/2+eps,pi-eps,True)
    params.set("s2cr"  ,0.001,   0,2,True)
    #if len(sys.argv) == 2: #run with a param to start from the beginning
    params.save()
    params.load()

    data=iso.readfits(isodir+"/datarr.fits")
    isos = iso.readisos(isodir)
    t=utils.frange(8,10.25,0.001)
    ndata = sum(data.flat)
    def f(par):
        params.setvalues(par)
        w=utils.calculateweights(t,sfr(t,params))
        isow=iso.getisosweights(w,10.**t,metallicity(t,params),isos)
        #isow=iso.getisosweights_gauss(w,10.**t,metallicity(t,params),isos,
        #        params.sigma)
        m=iso.computeCMD(isow,isos)
        m=utils.normalize(m,ndata)
        return utils.loglikelihood(m,data)

    d = maximum(data,1e-20)
    llhC=sum( (d*log(d)).flat )
    def b(par,value,iter):
        params.setvalues(par)
        params.save()
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter

    #always try a different initial guess:
    params.randomize()

    sfr_initial = sfr(t,params)
    met_initial = metallicity(t,params)

    print "start"
    #todo:
    #- the reflectlogistics randomizes the parameters once more, thus
    #the sfr_initial and met_initial is nonsense then. fix it in 
    #ReflectLogistics.fracinv()
    #- let the simplex method restart automatically

    #pars=optimization.minmax(optimization.fmin_bfgs,
    pars=optimization.minmax(optimization.fmin_simplex,
    #pars=optimization.minmax(optimization.fmin_anneal,
            f,params.getvalues(),params.min(),params.max(),
            callback=b, iter=100, 
            #logistics = optimization.ReflectLogistics)
            logistics = optimization.ExpLogistics)
Beispiel #6
0
        m=utils.normalize(iso.computeCMD(params,isos),ndata)
        return utils.loglikelihood(m,data)

    d = maximum(data,1e-20)
    llhC=sum( (d*log(d)).flat )
    def b(params,value,iter):
        "Print status everytime a best fit is found."
        m=iso.computeCMD(params,isos)
        C=sum(data.flat)/sum(m.flat)
        x=array(params)
        bestfit[0] = x*C
        file("bestfit117","w").write(str(list(bestfit[0])))
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter,"norm:",C

    a= optimization.minc(optimization.fmin_bfgs,f,pars,callback=b,iter=iter)
    b(a, f(a), -1)
    return a


print "reading isochrones"
data=iso.readfits(chemev.isodir+"/117/stream/datarr.fits")
isos = iso.readisos(chemev.isodir+"/117/stream")

pars=[1.0]*117

print "fitting"

pars=fitting_iteration(pars,200)

print "done"
Beispiel #7
0
    def b(params, value, iter):
        "Print status everytime a best fit is found."
        m = iso.computeCMD(params, isos)
        C = sum(data.flat) / sum(m.flat)
        x = array(params)
        bestfit[0] = x * C
        file("bestfit117", "w").write(str(list(bestfit[0])))
        print "henry:", value, "tom:", 2.0 * (value +
                                              llhC), "iter:", iter, "norm:", C

    a = optimization.minc(optimization.fmin_bfgs,
                          f,
                          pars,
                          callback=b,
                          iter=iter)
    b(a, f(a), -1)
    return a


print "reading isochrones"
data = iso.readfits(chemev.isodir + "/117/disk/datarr.fits")
isos = iso.readisos(chemev.isodir + "/117/disk")

pars = [1.0] * 117

print "fitting"

pars = fitting_iteration(pars, 200)

print "done"
Beispiel #8
0
import numpy as numarray

from chemev import iso,utils,optimization

if not optimization.have_mcmc:
    print "PyMC not installed correctly. Check the PYTHONPATH."
    print "PYTHONPATH=",sys.path
    sys.exit()

print "reading isochrones"
#isodir="m31iso"
#isodir="m117halo"
isodir="../../isochrones/117/halo"
data=iso.readfits(isodir+"/datarr.fits")
isos = iso.readisos(isodir)

print "fitting"
pars=eval(file("bestfit117").readline())

ndata=sum(data.flat)
d = numarray.maximum(data,1e-20)
llhC=sum( (d*numarray.log(d)).flat )
iter=0
out=file("mcmc.out","w")
def f(params):
    global iter
    m=iso.computeCMD(params,isos)
    C=ndata/sum(m.flat)
    x=numarray.array(params)
#    out.write(str(list(x*C))+"\n")
Beispiel #9
0
def simul(isodir):
    params = parameters()
    eps = 0.01
    #feh
    params.set("m0y", 0.9, -1, 1, True)
    params.set("m0cphi", -0.001, -pi / 2 + eps, 0, True)
    params.set("m0cr", 0.01, 0, 2, True)
    params.set("m1y", -0.9, -1, 1, True)
    params.set("m1cphi", 1.67, pi / 2 + eps, pi, True)
    params.set("m1cr", 1.06, 0, 2, True)

    #    params.set("sigma" ,0.6,  0,1, True)
    #sfr
    params.set("s0y", 1.11, 0.0, 2, True)
    params.set("s0cphi", 0.0003, 0, pi / 2 - eps, True)
    params.set("s0cr", 1, 0, 1, True)
    params.set("s1x", 9.9, 8, 10, True)
    params.set("s1y", 5.9, 1.5, 10, True)
    params.set("s1cphi", 4.61, pi / 2 + eps, pi * 3 / 2 - eps, True)
    params.set("s1cr", 0.49, 0, 0.5, True)
    params.set("s2y", 0.89, 0, 2, True)
    params.set("s2cphi", 3.04, pi / 2 + eps, pi - eps, True)
    params.set("s2cr", 0.001, 0, 2, True)
    #if len(sys.argv) == 2: #run with a param to start from the beginning
    params.save()
    params.load()

    data = iso.readfits(isodir + "/datarr.fits")
    isos = iso.readisos(isodir)
    t = utils.frange(8, 10.25, 0.001)
    ndata = sum(data.flat)

    def f(params):
        w = utils.calculateweights(t, sfr(t, params))
        isow = iso.getisosweights(w, 10.**t, metallicity(t, params), isos)
        #a3=time.time()
        m = iso.computeCMD(isow, isos)
        #a4=time.time()
        m = utils.normalize(m, ndata)
        l = utils.loglikelihood(m, data)
        #print a4-a3
        return l

    d = maximum(data, 1e-20)
    llhC = sum((d * log(d)).flat)

    def b(par, value, iter):
        params.setvalues(par)
        params.save()
        print "henry:", value, "tom:", 2.0 * (value + llhC), "iter:", iter

    print "start"
    bestfit = (0, 0)
    it = 0
    while 1:
        it += 1
        params.randomize()
        #ti = time.time()
        r = f(params)
        #ti -= time.time()
        #print "time:",ti
        if r < bestfit[1]:
            bestfit = (params.getvalues(), r)
            print "%d:" % it, r
Beispiel #10
0
    d = maximum(data,1e-20)
    llhC=sum( (d*log(d)).flat )
    def b(params,value,iter):
        "Print status everytime a best fit is found."
        m=iso.computeCMD(params,isos)
        C=sum(data.flat)/sum(m.flat)
        x=array(params)
        bestfit[0] = x*C
        file("bestfit117","w").write(str(list(bestfit[0])))
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter,"norm:",C

    optimization.minc(optimization.fmin_simplex,f,pars,callback=b,iter=iter)
    return bestfit[0]

print "reading isochrones"
data=iso.readfits(chemev.isodir+"/117/halo/datarr.fits")
isos = iso.readisos(chemev.isodir+"/117/halo")

pars=[1.0]*117

print "fitting"

#this is the hardwired empirical key to achieve the best fit. :)
best_fit_path = [800, 1800, 1500, 2000]+ [2000]*100
print "we are going to do this amount of iterations:",best_fit_path
for iter in best_fit_path:
    print "### doing %d iterations ###"%iter
    pars=fitting_iteration(pars,iter)

print "done"
Beispiel #11
0
#! /usr/bin/env python
"""Writes all the information about the best fit to the file "protocol" """

import sys
from chemev import iso, isodir, utils

print "reading isochrones"
data = iso.readfits(isodir + "/117/halo/datarr.fits")
isos = iso.readisos(isodir + "/117/halo")

isow = eval(open("bestfit117").readline())
model = iso.computeCMD(isow, isos)
model = utils.normalize(model, sum(data.flat))


def plot_residuals(d, m, aspect=0.2):
    """
    todo: the same color range for both data and model. the rediduals are ok
    """
    import pylab
    pylab.figure()
    pylab.subplot(221)
    pylab.imshow(d, origin='lower', interpolation="nearest", aspect=aspect)
    pylab.title("data")
    pylab.colorbar()
    pylab.subplot(222)
    pylab.imshow(m, origin='lower', interpolation="nearest", aspect=aspect)
    pylab.title("model")
    pylab.colorbar()
    pylab.subplot(223)
    residuals = d - m
Beispiel #12
0
        m=utils.normalize(iso.computeCMD(params,isos),ndata)
        return utils.loglikelihood(m,data)

    d = maximum(data,1e-20)
    llhC=sum( (d*log(d)).flat )
    def b(params,value,iter):
        "Print status everytime a best fit is found."
        m=iso.computeCMD(params,isos)
        C=sum(data.flat)/sum(m.flat)
        x=array(params)
        bestfit[0] = x*C
        file("bestfit117","w").write(str(list(bestfit[0])))
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter,"norm:",C

    a= optimization.minc(optimization.fmin_bfgs,f,pars,callback=b,iter=iter)
    b(a, f(a), -1)
    return a


print "reading isochrones"
data=iso.readfits(chemev.isodir+"/117/disk/datarr.fits")
isos = iso.readisos(chemev.isodir+"/117/disk")

pars=[1.0]*117

print "fitting"

pars=fitting_iteration(pars,200)

print "done"
Beispiel #13
0
    def b(params, value, iter):
        "Print status everytime a best fit is found."
        m = iso.computeCMD(params, isos)
        C = sum(data.flat) / sum(m.flat)
        x = array(params)
        bestfit[0] = x * C
        file("bestfit117", "w").write(str(list(bestfit[0])))
        print "henry:", value, "tom:", 2.0 * (value +
                                              llhC), "iter:", iter, "norm:", C

    a = optimization.minc(optimization.fmin_bfgs,
                          f,
                          pars,
                          callback=b,
                          iter=iter)
    b(a, f(a), -1)
    return a


print "reading isochrones"
data = iso.readfits(chemev.isodir + "/696/halo/datarr.fits")
isos = iso.readisos(chemev.isodir + "/696/halo")

pars = [1.0] * 696

print "fitting"

pars = fitting_iteration(pars, 200)

print "done"
Beispiel #14
0
#! /usr/bin/env python
"""Writes all the information about the best fit to the file "protocol" """

import sys
from chemev import iso, isodir, utils

print "reading isochrones"
data = iso.readfits(isodir+"/117/halo/datarr.fits")
isos = iso.readisos(isodir+"/117/halo")

isow = eval(open("bestfit117").readline())
model = iso.computeCMD(isow,isos)
model = utils.normalize(model,sum(data.flat))

def plot_residuals(d,m,aspect=0.2):
    """
    todo: the same color range for both data and model. the rediduals are ok
    """
    import pylab
    pylab.figure()
    pylab.subplot(221)
    pylab.imshow(d,origin='lower',interpolation="nearest",aspect=aspect)
    pylab.title("data")
    pylab.colorbar()
    pylab.subplot(222)
    pylab.imshow(m,origin='lower',interpolation="nearest",aspect=aspect)
    pylab.title("model")
    pylab.colorbar()
    pylab.subplot(223)
    residuals = d-m
    pylab.imshow(residuals,origin='lower',interpolation="nearest",aspect=aspect)
Beispiel #15
0
def simul(isodir):
    params=parameters()
    eps=0.01
    #feh
    params.set("m0y"   ,0.9, -1,1,True)
    params.set("m0cphi",-0.001,  -pi/2+eps,0,True)
    params.set("m0cr"  ,0.01,  0,2,True)
    params.set("m1y"   ,-0.9,  -1,1,True)
    params.set("m1cphi",1.67,  pi/2+eps,pi,True)
    params.set("m1cr"  ,1.06,  0,2,True)

#    params.set("sigma" ,0.6,  0,1, True)
    #sfr
    params.set("s0y"   ,1.11,   0.0,2,True)
    params.set("s0cphi",0.0003,   0,pi/2-eps,True)
    params.set("s0cr"  ,1,   0,1,True)
    params.set("s1x"   ,9.9,   8,10,True)
    params.set("s1y"   ,5.9, 1.5,10,True)
    params.set("s1cphi",4.61,   pi/2+eps,pi*3/2-eps,True)
    params.set("s1cr"  ,0.49,   0,0.5,True)
    params.set("s2y"   ,0.89, 0,2,True)
    params.set("s2cphi",3.04,   pi/2+eps,pi-eps,True)
    params.set("s2cr"  ,0.001,   0,2,True)
    #if len(sys.argv) == 2: #run with a param to start from the beginning
    params.save()
    params.load()

    data=iso.readfits(isodir+"/datarr.fits")
    isos = iso.readisos(isodir)
    t=utils.frange(8,10.25,0.001)
    ndata = sum(data.flat)
    def f(params):
        w=utils.calculateweights(t,sfr(t,params))
        isow=iso.getisosweights(w,10.**t,metallicity(t,params),isos)
        #a3=time.time()
        m=iso.computeCMD(isow,isos)
        #a4=time.time()
        m=utils.normalize(m,ndata)
        l= utils.loglikelihood(m,data)
        #print a4-a3
        return l

    d = maximum(data,1e-20)
    llhC=sum( (d*log(d)).flat )
    def b(par,value,iter):
        params.setvalues(par)
        params.save()
        print "henry:",value,"tom:",2.0*(value+llhC),"iter:",iter

    print "start"
    bestfit = (0,0)
    it = 0
    while 1:
        it += 1
        params.randomize()
        #ti = time.time()
        r = f(params)
        #ti -= time.time()
        #print "time:",ti
        if r < bestfit[1]:
            bestfit = (params.getvalues(), r)
            print "%d:"%it, r
Beispiel #16
0
    def b(params, value, iter):
        "Print status everytime a best fit is found."
        m = iso.computeCMD(params, isos)
        C = sum(data.flat) / sum(m.flat)
        x = array(params)
        bestfit[0] = x * C
        file("bestfit117", "w").write(str(list(bestfit[0])))
        print "henry:", value, "tom:", 2.0 * (value +
                                              llhC), "iter:", iter, "norm:", C

    a = optimization.minc(optimization.fmin_bfgs,
                          f,
                          pars,
                          callback=b,
                          iter=iter)
    b(a, f(a), -1)
    return a


print "reading isochrones"
data = iso.readfits(chemev.isodir + "/117/stream/datarr.fits")
isos = iso.readisos(chemev.isodir + "/117/stream")

pars = [1.0] * 117

print "fitting"

pars = fitting_iteration(pars, 200)

print "done"