Beispiel #1
0
def run_split_data(args: Args):
    # Load raw data
    with open(args.data_path) as f:
        reader = csv.reader(f)
        header = next(reader)
        lines = list(reader)

    # Load SMILES
    smiles = get_smiles(path=args.data_path, smiles_column=args.smiles_column)

    # Make sure lines and smiles line up
    assert len(lines) == len(smiles)
    assert all(smile in line for smile, line in zip(smiles, lines))

    # Create data
    data = []
    for smile, line in tqdm(zip(smiles, lines), total=len(smiles)):
        datapoint = MoleculeDatapoint(smiles=smile)
        datapoint.line = line
        data.append(datapoint)
    data = MoleculeDataset(data)

    train, val, test = split_data(data=data,
                                  split_type=args.split_type,
                                  sizes=args.split_sizes,
                                  seed=args.seed)

    makedirs(args.save_dir)

    for name, dataset in [('train', train), ('val', val), ('test', test)]:
        with open(os.path.join(args.save_dir, f'{name}.csv'), 'w') as f:
            writer = csv.writer(f)
            writer.writerow(header)
            for datapoint in dataset:
                writer.writerow(datapoint.line)
Beispiel #2
0
def run_random_forest(args: Namespace, logger: Logger = None) -> List[float]:
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    debug(pformat(vars(args)))

    metric_func = get_metric_func(args.metric)

    debug('Loading data')
    data = get_data(path=args.data_path)

    debug(f'Splitting data with seed {args.seed}')
    # Need to have val set so that train and test sets are the same as when doing MPN
    train_data, _, test_data = split_data(data=data, split_type=args.split_type, seed=args.seed)

    debug(f'Total size = {len(data):,} | train size = {len(train_data):,} | test size = {len(test_data):,}')

    debug('Computing morgan fingerprints')
    for dataset in [train_data, test_data]:
        for datapoint in tqdm(dataset, total=len(dataset)):
            datapoint.set_features(morgan_fingerprint(smiles=datapoint.smiles, radius=args.radius, num_bits=args.num_bits))

    debug('Training')
    if args.single_task:
        scores = single_task_random_forest(train_data, test_data, metric_func, args)
    else:
        scores = multi_task_random_forest(train_data, test_data, metric_func, args)

    info(f'Test {args.metric} = {np.nanmean(scores)}')

    return scores
Beispiel #3
0
def class_balance(data_path: str, split_type: str):
    # Update args
    args.val_fold_index, args.test_fold_index = 1, 2
    args.split_type = 'predetermined'

    # Load data
    data = get_data(path=args.data_path,
                    smiles_column=args.smiles_column,
                    target_columns=args.target_columns)
    args.task_names = args.target_columns or get_task_names(
        path=args.data_path, smiles_column=args.smiles_column)

    # Average class sizes
    all_class_sizes = {'train': [], 'val': [], 'test': []}

    for i in range(10):
        print(f'Fold {i}')

        # Update args
        data_name = os.path.splitext(os.path.basename(data_path))[0]
        args.folds_file = f'/data/rsg/chemistry/yangk/lsc_experiments_dump_splits/data/{data_name}/{split_type}/fold_{i}/0/split_indices.pckl'

        if not os.path.exists(args.folds_file):
            print(f'Fold indices do not exist')
            continue

        # Split data
        train_data, val_data, test_data = split_data(
            data=data, split_type=args.split_type, args=args)

        # Determine class balance
        for data_split, split_name in [(train_data, 'train'),
                                       (val_data, 'val'), (test_data, 'test')]:
            class_sizes = get_class_sizes(data_split)
            print(f'Class sizes for {split_name}')

            for i, task_class_sizes in enumerate(class_sizes):
                print(
                    f'{args.task_names[i]} '
                    f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
                )

            all_class_sizes[split_name].append(class_sizes)

        print()

    # Mean and std across folds
    for split_name in ['train', 'val', 'test']:
        print(f'Average class sizes for {split_name}')

        mean_class_sizes, std_class_sizes = np.mean(
            all_class_sizes[split_name],
            axis=0), np.std(all_class_sizes[split_name], axis=0)

        for i, (mean_task_class_sizes, std_task_class_sizes) in enumerate(
                zip(mean_class_sizes, std_class_sizes)):
            print(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {mean_size * 100:.2f}% +/- {std_size * 100:.2f}%" for cls, (mean_size, std_size) in enumerate(zip(mean_task_class_sizes, std_task_class_sizes)))}'
            )
def run_split_data(data_path: str, split_type: str,
                   split_sizes: Tuple[int, int,
                                      int], seed: int, save_dir: str):
    with open(data_path) as f:
        reader = csv.reader(f)
        header = next(reader)
        lines = list(reader)

    data = []
    for line in tqdm(lines):
        datapoint = MoleculeDatapoint(line=line)
        datapoint.line = line
        data.append(datapoint)
    data = MoleculeDataset(data)

    train, dev, test = split_data(data=data,
                                  split_type=split_type,
                                  sizes=split_sizes,
                                  seed=seed)

    makedirs(save_dir)

    for name, dataset in [('train', train), ('dev', dev), ('test', test)]:
        with open(os.path.join(save_dir, f'{name}.csv'), 'w') as f:
            writer = csv.writer(f)
            writer.writerow(header)
            for datapoint in dataset:
                writer.writerow(datapoint.line)
Beispiel #5
0
def random_split(dataset, seed_val):
    # get target names (assuming that 1st column contains molecule names and 2nd column contains smiles and rest of the columns are targets)
    df = pd.read_csv(dataset, sep=",", index_col=None, dtype={'RTECS_ID': str})
    cols = list(df.columns)
    target_names = cols[2:]

    mol_dataset = utils.get_data(dataset, use_compound_names=True)
    train, valid, test = utils.split_data(mol_dataset,
                                          sizes=(0.7, 0.1, 0.2),
                                          seed=seed_val)
    train_df = get_partition_as_df(train, target_names)
    train_df = train_df[['RTECS_ID']]
    valid_df = get_partition_as_df(valid, target_names)
    valid_df = valid_df[['RTECS_ID']]
    test_df = get_partition_as_df(test, target_names)
    test_df = test_df[['RTECS_ID']]
    return train_df, valid_df, test_df
def prepare_data(args):
    data = get_data(path=args.data_path, args=args)
    source_data = get_data(path=args.source_data_path, args=args)

    # split train, val, test
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args)

    args.num_tasks = train_data.num_tasks()
    args.features_size = train_data.features_size()
    args.train_data_size = len(train_data)

    print('source data:', len(source_data))
    print('target data:', len(data))

    return train_data, val_data, test_data, source_data
def run_training_gnn_xgb(args: TrainArgs,
                         logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    val_smiles, val_targets = val_data.smiles(), val_data.targets()
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

                # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        test_preds, _ = predict(model=model,
                                data_loader=test_data_loader,
                                scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    _, train_feature = predict(model=model,
                               data_loader=train_data_loader,
                               scaler=scaler)
    _, val_feature = predict(model=model,
                             data_loader=val_data_loader,
                             scaler=scaler)
    _, test_feature = predict(model=model,
                              data_loader=test_data_loader,
                              scaler=scaler)

    return ensemble_scores, train_feature, val_feature, test_feature, train_targets, val_targets, test_targets
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
# =============================================================================
#     debug(pformat(vars(args)))
# =============================================================================

# Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.2, 0.0),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        print('=' * 100)
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

        ###my_code###
        train_df = get_data_df(train_data)
        train_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_train_df_seed0.csv')
        val_df = get_data_df(val_data)
        val_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_val_df_seed0.csv')
        test_df = get_data_df(test_data)
        test_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_test_df_seed0.csv')

        ##########

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'),
                              (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'),
                  'wb') as f:
            pickle.dump(all_split_indices, f)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)
        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    current_args=args,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data=train_data,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data=val_data,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  batch_size=args.batch_size,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                cuda=args.cuda,
                                logger=logger)

        test_preds = predict(model=model,
                             data=test_data,
                             batch_size=args.batch_size,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score,
                      0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
def predict_feature(args, logger, model, external_test_path):
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    external_test_data = get_data(path=external_test_path,
                                  args=args,
                                  logger=logger)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        external_test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    scaler = None

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=False,
                                           seed=args.seed)
    external_test_loader = MoleculeDataLoader(dataset=external_test_data,
                                              batch_size=args.batch_size,
                                              num_workers=num_workers,
                                              cache=cache,
                                              class_balance=args.class_balance,
                                              shuffle=False,
                                              seed=args.seed)
    external_test_preds, external_test_feature = predict(
        model=model, data_loader=external_test_loader, scaler=scaler)
    external_test_smiles, external_test_targets = external_test_data.smiles(
    ), external_test_data.targets()
    return external_test_smiles, external_test_feature, external_test_preds, external_test_targets
Beispiel #10
0
def run_sklearn(args: SklearnTrainArgs, logger: Logger = None) -> List[float]:
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    debug(pformat(vars(args)))

    metric_func = get_metric_func(args.metric)

    debug('Loading data')
    data = get_data(path=args.data_path,
                    smiles_column=args.smiles_column,
                    target_columns=args.target_columns)
    args.task_names = get_task_names(path=args.data_path,
                                     smiles_column=args.smiles_column,
                                     target_columns=args.target_columns,
                                     ignore_columns=args.ignore_columns)

    if args.model_type == 'svm' and data.num_tasks() != 1:
        raise ValueError(
            f'SVM can only handle single-task data but found {data.num_tasks()} tasks'
        )

    debug(f'Splitting data with seed {args.seed}')
    # Need to have val set so that train and test sets are the same as when doing MPN
    train_data, _, test_data = split_data(data=data,
                                          split_type=args.split_type,
                                          seed=args.seed,
                                          sizes=args.split_sizes,
                                          args=args)

    debug(
        f'Total size = {len(data):,} | train size = {len(train_data):,} | test size = {len(test_data):,}'
    )

    debug('Computing morgan fingerprints')
    morgan_fingerprint = get_features_generator('morgan')
    for dataset in [train_data, test_data]:
        for datapoint in tqdm(dataset, total=len(dataset)):
            datapoint.set_features(
                morgan_fingerprint(mol=datapoint.smiles,
                                   radius=args.radius,
                                   num_bits=args.num_bits))

    debug('Building model')
    if args.dataset_type == 'regression':
        if args.model_type == 'random_forest':
            model = RandomForestRegressor(n_estimators=args.num_trees,
                                          n_jobs=-1)
        elif args.model_type == 'svm':
            model = SVR()
        else:
            raise ValueError(f'Model type "{args.model_type}" not supported')
    elif args.dataset_type == 'classification':
        if args.model_type == 'random_forest':
            model = RandomForestClassifier(n_estimators=args.num_trees,
                                           n_jobs=-1,
                                           class_weight=args.class_weight)
        elif args.model_type == 'svm':
            model = SVC()
        else:
            raise ValueError(f'Model type "{args.model_type}" not supported')
    else:
        raise ValueError(f'Dataset type "{args.dataset_type}" not supported')

    debug(model)

    model.train_args = args.as_dict()

    debug('Training')
    if args.single_task:
        scores = single_task_sklearn(model=model,
                                     train_data=train_data,
                                     test_data=test_data,
                                     metric_func=metric_func,
                                     args=args,
                                     logger=logger)
    else:
        scores = multi_task_sklearn(model=model,
                                    train_data=train_data,
                                    test_data=test_data,
                                    metric_func=metric_func,
                                    args=args,
                                    logger=logger)

    info(f'Test {args.metric} = {np.nanmean(scores)}')

    return scores
Beispiel #11
0
def new_noise(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # load the model
        if (args.method == 'map') or (args.method == 'swag') or (args.method
                                                                 == 'sgld'):
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'gp':
            args.num_inducing_points = 1200
            fake_model = MoleculeModel(args)
            fake_model.featurizer = True
            feature_extractor = fake_model
            inducing_points = initial_inducing_points(train_data_loader,
                                                      feature_extractor, args)
            gp_layer = GPLayer(inducing_points, args.num_tasks)
            model = load_checkpoint(
                args.checkpoint_path + f'/model_{model_idx}/DKN_model.pt',
                device=args.device,
                logger=None,
                template=DKLMoleculeModel(MoleculeModel(args, featurizer=True),
                                          gp_layer))

        if args.method == 'dropR' or args.method == 'dropA':
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'bbp':
            template = MoleculeModelBBP(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_bbp.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        if args.method == 'dun':
            args.prior_sig_dun = 0.05
            args.depth_min = 1
            args.depth_max = 5
            args.rho_min_dun = -5.5
            args.rho_max_dun = -5
            args.log_cat_init = 0
            template = MoleculeModelDUN(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            template.create_log_cat(args)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_dun.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # train_preds, train_targets
        train_preds = predict(model=model,
                              data_loader=train_data_loader,
                              args=args,
                              scaler=scaler,
                              test_data=False,
                              bbp_sample=False)
        train_preds = np.array(train_preds)
        train_targets = np.array(train_targets)

        # compute tstats
        tstats = np.ones((12, 3))
        for task in range(12):
            resid = train_preds[:, task] - train_targets[:, task]
            tstats[task] = np.array(stats.t.fit(resid, floc=0.0))

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # save down
            np.savez(os.path.join(results_dir, f'tstats_{sample_idx}'), tstats)

            print('done one')
Beispiel #12
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
    debug(pformat(vars(args)))

    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    desired_labels = get_desired_labels(args, args.task_names)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    args.real_num_tasks = args.num_tasks - args.features_size if args.predict_features else args.num_tasks
    debug(f'Number of tasks = {args.num_tasks}')

    if args.dataset_type == 'bert_pretraining':
        data.bert_init(args, logger)

    # Split data
    if args.dataset_type == 'regression_with_binning':  # Note: for now, binning based on whole dataset, not just training set
        data, bin_predictions, regression_data = data
        args.bin_predictions = bin_predictions
        debug(f'Splitting data with seed {args.seed}')
        train_data, _, _ = split_data(data=data,
                                      split_type=args.split_type,
                                      sizes=args.split_sizes,
                                      seed=args.seed,
                                      args=args,
                                      logger=logger)
        _, val_data, test_data = split_data(regression_data,
                                            split_type=args.split_type,
                                            sizes=args.split_sizes,
                                            seed=args.seed,
                                            args=args,
                                            logger=logger)
    else:
        debug(f'Splitting data with seed {args.seed}')
        if args.separate_test_set:
            test_data = get_data(path=args.separate_test_set,
                                 args=args,
                                 features_path=args.separate_test_set_features,
                                 logger=logger)
            if args.separate_val_set:
                val_data = get_data(
                    path=args.separate_val_set,
                    args=args,
                    features_path=args.separate_val_set_features,
                    logger=logger)
                train_data = data  # nothing to split; we already got our test and val sets
            else:
                train_data, val_data, _ = split_data(
                    data=data,
                    split_type=args.split_type,
                    sizes=(0.8, 0.2, 0.0),
                    seed=args.seed,
                    args=args,
                    logger=logger)
        else:
            train_data, val_data, test_data = split_data(
                data=data,
                split_type=args.split_type,
                sizes=args.split_sizes,
                seed=args.seed,
                args=args,
                logger=logger)

    # Optionally replace test data with train or val data
    if args.test_split == 'train':
        test_data = train_data
    elif args.test_split == 'val':
        test_data = val_data

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

        if args.class_balance:
            train_class_sizes = get_class_sizes(train_data)
            class_batch_counts = torch.Tensor(
                train_class_sizes) * args.batch_size
            args.class_weights = 1 / torch.Tensor(class_batch_counts)

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'),
                              (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'),
                  'wb') as f:
            pickle.dump(all_split_indices, f)
        return [1 for _ in range(args.num_tasks)
                ]  # short circuit out when just generating splits

    if args.features_scaling:
        features_scaler = train_data.normalize_features(
            replace_nan_token=None if args.predict_features else 0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(
        train_data
    ) if args.prespecified_chunk_dir is None else args.prespecified_chunks_max_examples_per_epoch

    if args.adversarial or args.moe:
        val_smiles, test_smiles = val_data.smiles(), test_data.smiles()

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Optionally truncate outlier values
    if args.truncate_outliers:
        print('Truncating outliers in train set')
        train_data = truncate_outliers(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression' and args.target_scaling:
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    if args.moe:
        train_data = cluster_split(train_data,
                                   args.num_sources,
                                   args.cluster_max_ratio,
                                   seed=args.cluster_split_seed,
                                   logger=logger)

    # Chunk training data if too large to load in memory all at once
    if args.num_chunks > 1:
        os.makedirs(args.chunk_temp_dir, exist_ok=True)
        train_paths = []
        if args.moe:
            chunked_sources = [td.chunk(args.num_chunks) for td in train_data]
            chunks = []
            for i in range(args.num_chunks):
                chunks.append([source[i] for source in chunked_sources])
        else:
            chunks = train_data.chunk(args.num_chunks)
        for i in range(args.num_chunks):
            chunk_path = os.path.join(args.chunk_temp_dir, str(i) + '.txt')
            memo_path = os.path.join(args.chunk_temp_dir,
                                     'memo' + str(i) + '.txt')
            with open(chunk_path, 'wb') as f:
                pickle.dump(chunks[i], f)
            train_paths.append((chunk_path, memo_path))
        train_data = train_paths

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric, args=args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.maml:  # TODO refactor
        test_targets = []
        for task_idx in range(len(data.data[0].targets)):
            _, task_test_data, _ = test_data.sample_maml_task(args, seed=0)
            test_targets += task_test_data.targets()

    if args.dataset_type == 'bert_pretraining':
        sum_test_preds = {
            'features':
            np.zeros((len(test_smiles), args.features_size))
            if args.features_size is not None else None,
            'vocab':
            np.zeros((len(test_targets['vocab']), args.vocab.output_size))
        }
    elif args.dataset_type == 'kernel':
        sum_test_preds = np.zeros((len(test_targets), args.num_tasks))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    if args.maml:
        sum_test_preds = None  # annoying to determine exact size; will initialize later

    if args.dataset_type == 'bert_pretraining':
        # Only predict targets that are masked out
        test_targets['vocab'] = [
            target if mask == 0 else None
            for target, mask in zip(test_targets['vocab'], test_data.mask())
        ]

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        os.makedirs(save_dir, exist_ok=True)
        writer = SummaryWriter(log_dir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    current_args=args,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        if args.adjust_weight_decay:
            args.pnorm_target = compute_pnorm(model)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            if args.prespecified_chunk_dir is not None:
                # load some different random chunks each epoch
                train_data, val_data = load_prespecified_chunks(args, logger)
                debug('Loaded prespecified chunks for epoch')

            if args.dataset_type == 'unsupervised':  # won't work with moe
                full_data = MoleculeDataset(train_data.data + val_data.data)
                generate_unsupervised_cluster_labels(
                    build_model(args), full_data,
                    args)  # cluster with a new random init
                model.create_ffn(
                    args
                )  # reset the ffn since we're changing targets-- we're just pretraining the encoder.
                optimizer.param_groups.pop()  # remove ffn parameters
                optimizer.add_param_group({
                    'params': model.ffn.parameters(),
                    'lr': args.init_lr[1],
                    'weight_decay': args.weight_decay[1]
                })
                if args.cuda:
                    model.ffn.cuda()

            if args.gradual_unfreezing:
                if epoch % args.epochs_per_unfreeze == 0:
                    unfroze_layer = model.unfreeze_next(
                    )  # consider just stopping early after we have nothing left to unfreeze?
                    if unfroze_layer:
                        debug('Unfroze last frozen layer')

            n_iter = train(model=model,
                           data=train_data,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer,
                           chunk_names=(args.num_chunks > 1),
                           val_smiles=val_smiles if args.adversarial else None,
                           test_smiles=test_smiles
                           if args.adversarial or args.moe else None)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data=val_data,
                                  metric_func=metric_func,
                                  args=args,
                                  scaler=scaler,
                                  logger=logger)

            if args.dataset_type == 'bert_pretraining':
                if val_scores['features'] is not None:
                    debug(
                        f'Validation features rmse = {val_scores["features"]:.6f}'
                    )
                    writer.add_scalar('validation_features_rmse',
                                      val_scores['features'], n_iter)
                val_scores = [val_scores['vocab']]

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    if task_name in desired_labels:
                        debug(
                            f'Validation {task_name} {args.metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(
                            f'validation_{task_name}_{args.metric}', val_score,
                            n_iter)

            # Save model checkpoint if improved validation score, or always save it if unsupervised
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score or \
                    args.dataset_type == 'unsupervised':
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        if args.dataset_type == 'unsupervised':
            return [0]  # rest of this is meaningless when unsupervised

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                cuda=args.cuda,
                                logger=logger)

        if args.split_test_by_overlap_dataset is not None:
            overlap_data = get_data(path=args.split_test_by_overlap_dataset,
                                    logger=logger)
            overlap_smiles = set(overlap_data.smiles())
            test_data_intersect, test_data_nonintersect = [], []
            for d in test_data.data:
                if d.smiles in overlap_smiles:
                    test_data_intersect.append(d)
                else:
                    test_data_nonintersect.append(d)
            test_data_intersect, test_data_nonintersect = MoleculeDataset(
                test_data_intersect), MoleculeDataset(test_data_nonintersect)
            for name, td in [('Intersect', test_data_intersect),
                             ('Nonintersect', test_data_nonintersect)]:
                test_preds = predict(model=model,
                                     data=td,
                                     args=args,
                                     scaler=scaler,
                                     logger=logger)
                test_scores = evaluate_predictions(
                    preds=test_preds,
                    targets=td.targets(),
                    metric_func=metric_func,
                    dataset_type=args.dataset_type,
                    args=args,
                    logger=logger)
                avg_test_score = np.nanmean(test_scores)
                info(
                    f'Model {model_idx} test {args.metric} for {name} = {avg_test_score:.6f}'
                )

        if len(
                test_data
        ) == 0:  # just get some garbage results without crashing; in this case we didn't care anyway
            test_preds, test_scores = sum_test_preds, [
                0 for _ in range(len(args.task_names))
            ]
        else:
            test_preds = predict(model=model,
                                 data=test_data,
                                 args=args,
                                 scaler=scaler,
                                 logger=logger)
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

        if args.maml:
            if sum_test_preds is None:
                sum_test_preds = np.zeros(np.array(test_preds).shape)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                sum_test_preds['features'] += np.array(test_preds['features'])
            sum_test_preds['vocab'] += np.array(test_preds['vocab'])
        else:
            sum_test_preds += np.array(test_preds)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                debug(
                    f'Model {model_idx} test features rmse = {test_scores["features"]:.6f}'
                )
                writer.add_scalar('test_features_rmse',
                                  test_scores['features'], 0)
            test_scores = [test_scores['vocab']]

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                if task_name in desired_labels:
                    info(
                        f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{args.metric}',
                                      test_score, n_iter)

    # Evaluate ensemble on test set
    if args.dataset_type == 'bert_pretraining':
        avg_test_preds = {
            'features':
            (sum_test_preds['features'] / args.ensemble_size).tolist()
            if sum_test_preds['features'] is not None else None,
            'vocab': (sum_test_preds['vocab'] / args.ensemble_size).tolist()
        }
    else:
        avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    if len(test_data
           ) == 0:  # just return some garbage when we didn't want test data
        ensemble_scores = test_scores
    else:
        ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

    # Average ensemble score
    if args.dataset_type == 'bert_pretraining':
        if ensemble_scores['features'] is not None:
            info(
                f'Ensemble test features rmse = {ensemble_scores["features"]:.6f}'
            )
            writer.add_scalar('ensemble_test_features_rmse',
                              ensemble_scores['features'], 0)
        ensemble_scores = [ensemble_scores['vocab']]

    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score,
                      0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Beispiel #13
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # Set pytorch seed for random initial weights
        torch.manual_seed(args.pytorch_seeds[model_idx])

        ######## set up all logging ########
        # make save_dir
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # initialise wandb
        os.environ['WANDB_MODE'] = 'dryrun'
        wandb.init(name=args.wandb_name + '_' + str(model_idx),
                   project=args.wandb_proj,
                   reinit=True)
        print('WANDB directory is:')
        print(wandb.run.dir)
        ####################################

        # Load/build model
        if args.checkpoint_path is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_path}')
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizer
        optimizer = Adam([{
            'params': model.encoder.parameters()
        }, {
            'params': model.ffn.parameters()
        }, {
            'params': model.log_noise,
            'weight_decay': 0
        }],
                         lr=args.init_lr,
                         weight_decay=args.weight_decay)

        # Learning rate scheduler
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger)
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  args=args,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            wandb.log({"Validation MAE": avg_val_score})

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

            if epoch == args.noam_epochs - 1:
                optimizer = Adam([{
                    'params': model.encoder.parameters()
                }, {
                    'params': model.ffn.parameters()
                }, {
                    'params': model.log_noise,
                    'weight_decay': 0
                }],
                                 lr=args.final_lr,
                                 weight_decay=args.weight_decay)

                scheduler = scheduler_const([args.final_lr])

        # load model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        # SWAG training loop, returns swag_model
        if args.swag:
            model = train_swag(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # SGLD loop, which saves nets
        if args.sgld:
            model = train_sgld(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # GP loop
        if args.gp:
            model, likelihood = train_gp(model, train_data, val_data,
                                         num_workers, cache, metric_func,
                                         scaler, features_scaler, args,
                                         save_dir)

        # BBP
        if args.bbp:
            model = train_bbp(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        # DUN
        if args.dun:
            model = train_dun(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # draw model from collected SGLD models
            if args.sgld:
                model = load_checkpoint(os.path.join(save_dir,
                                                     f'model_{sample_idx}.pt'),
                                        device=args.device,
                                        logger=logger)

            # make predictions
            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 bbp_sample=True)

            #######################################################################
            #######################################################################
            #####        SAVING STUFF DOWN

            if args.gp:

                # get test_preds_std (scaled back to original data)
                test_preds_std = predict_std_gp(model=model,
                                                data_loader=test_data_loader,
                                                args=args,
                                                scaler=scaler,
                                                likelihood=likelihood)

                # 1 - MEANS
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))

                # 2 - STD, combined aleatoric and epistemic (we save down the stds, always)
                np.savez(os.path.join(results_dir, f'predsSTDEV_{sample_idx}'),
                         np.array(test_preds_std))

            else:

                # save test_preds and aleatoric uncertainties
                if args.dun:
                    log_cat = model.log_cat.detach().cpu().numpy()
                    cat = np.exp(log_cat) / np.sum(np.exp(log_cat))
                    np.savez(os.path.join(results_dir, f'cat_{sample_idx}'),
                             cat)

                    # samples from categorical dist and saves a depth MC sample
                    depth_sample = np.random.multinomial(1,
                                                         cat).nonzero()[0][0]
                    test_preds_MCdepth = predict_MCdepth(
                        model=model,
                        data_loader=test_data_loader,
                        args=args,
                        scaler=scaler,
                        d=depth_sample)
                    np.savez(
                        os.path.join(results_dir,
                                     f'predsMCDEPTH_{sample_idx}'),
                        np.array(test_preds_MCdepth))

                if args.swag:
                    log_noise = model.base.log_noise
                else:
                    log_noise = model.log_noise
                noise = np.exp(log_noise.detach().cpu().numpy()) * np.array(
                    scaler.stds)
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))
                np.savez(os.path.join(results_dir, f'noise_{sample_idx}'),
                         noise)

            #######################################################################
            #######################################################################

            # add predictions to sum_test_preds
            if len(test_preds) != 0:
                sum_test_preds += np.array(test_preds)

            # evaluate predictions using metric function
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               num_tasks=args.num_tasks,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               logger=logger)

            # compute average test score
            avg_test_score = np.nanmean(test_scores)
            info(
                f'Model {model_idx}, sample {sample_idx} test {args.metric} = {avg_test_score:.6f}'
            )

    #################################
    ########## Bayesian Model Average
    #################################
    # note: this is an average over Bayesian samples AND components in an ensemble

    # compute number of prediction iterations
    pred_iterations = args.ensemble_size * args.samples

    # average predictions across iterations
    avg_test_preds = (sum_test_preds / pred_iterations).tolist()

    # evaluate
    BMA_scores = evaluate_predictions(preds=avg_test_preds,
                                      targets=test_targets,
                                      num_tasks=args.num_tasks,
                                      metric_func=metric_func,
                                      dataset_type=args.dataset_type,
                                      logger=logger)

    # average scores across tasks
    avg_BMA_test_score = np.nanmean(BMA_scores)
    info(f'BMA test {args.metric} = {avg_BMA_test_score:.6f}')

    return BMA_scores
def save_test_data(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # save down test targets
    np.savez('/home/willlamb/results/test_targets', np.array(test_targets))

    return None