def main():

    # print(random.random())

    # time.sleep(1.)
    '''
        INITIAL STATE
    '''

    LookForTarget = True

    # slow_base_filename = './data/1_lone_wolf.npy'
    # slow_base_filename = './data/1_1_short_ellipse.npy'
    # slow_base_filename = './data/1_1_long_ellipse.npy'
    # slow_base_filename = './data/1_1_cercle.npy'
    slow_base_filename = './data/2_cercle.npy'
    # slow_base_filename = './data/3_cercle.npy'
    # slow_base_filename = './data/3_huit.npy'
    # slow_base_filename = './data/3_heart.npy'
    # slow_base_filename = './data/4_trefoil.npy'
    # slow_base_filename = './data/1x4_trefoil.npy'

    # fast_base_filename_list = ['./data/1_lone_wolf.npy'    ]
    fast_base_filename_list = ['./data/2_cercle.npy']
    # fast_base_filename_list = ['./data/3_cercle.npy'       ]
    # fast_base_filename_list = ['./data/3_huit.npy'         ]
    # fast_base_filename_list = ['./data/3_heart.npy'        ]
    # fast_base_filename_list = ['./data/3_dbl_heart.npy'    ]
    # fast_base_filename_list = ['./data/4_13_2_2_cercle.npy']
    # fast_base_filename_list = ['./data/4_trefoil.npy']

    # fast_base_filename_list = ['./data/2_cercle.npy','./data/3_huit.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/2_cercle.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ]

    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ,'./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/2_cercle.npy'    ,'./data/1_lone_wolf.npy','./data/2_cercle.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ,'./data/1_lone_wolf.npy','./data/3_huit.npy'    ]

    nfl = len(fast_base_filename_list)

    mass_mul = [1]
    nTf = [13]
    nbs = [2]
    nbf = [2]

    epsmul = 0.

    # mass_mul = [1,1,1,1]
    # mass_mul = [1.,1.+epsmul,1.+2*epsmul,1.+3*epsmul]
    # nTf = [1,1,1,1]
    # nbs = [1,1,1,1]
    # nbf = [1,1,1,1]

    # mass_mul = [1,1]
    # mass_mul = [3,2]
    # nTf = [37,37]
    # nbs = [1,1]
    # nbf = [2,3]

    mul_loops_ini = True
    # mul_loops_ini = False
    # mul_loops_ini = (np.random.random() > 1./2.)

    mul_loops = [mul_loops_ini for _ in range(nfl)]

    # Remove_Choreo_Sym = mul_loops
    Remove_Choreo_Sym = [True, False]
    # Remove_Choreo_Sym = [False,False]

    # Rotate_fast_with_slow = True
    Rotate_fast_with_slow = False
    # Rotate_fast_with_slow = (np.random.random() > 1./2.)

    # Optimize_Init = True
    Optimize_Init = False

    Randomize_Fast_Init = True
    # Randomize_Fast_Init = False

    all_coeffs_slow_load = np.load(slow_base_filename)
    all_coeffs_fast_load_list = []

    nbpl = []
    mass = []
    for i in range(nfl):
        fast_base_filename = fast_base_filename_list[i]
        all_coeffs_fast_load = np.load(fast_base_filename)

        if Remove_Choreo_Sym[i]:

            all_coeffs_fast_load_list_temp = []

            for ib in range(nbf[i]):

                tshift = (ib * 1.0) / nbf[i]

                all_coeffs_fast_load_list_temp.append(
                    choreo.Transform_Coeffs(np.identity(choreo.ndim), 1,
                                            tshift, 1, all_coeffs_fast_load))

                nbpl.append(nbs[i])
                mass.extend([mass_mul[i] for j in range(nbs[i])])

            all_coeffs_fast_load_list.append(
                np.concatenate(all_coeffs_fast_load_list_temp, axis=0))

        else:
            all_coeffs_fast_load_list.append(all_coeffs_fast_load)
            nbpl.append(nbs[i] * nbf[i])
            mass.extend([mass_mul[i] for j in range(nbs[i] * nbf[i])])

    mass = np.array(mass, dtype=np.float64)

    coeff_ampl_o = 1e-16
    k_infl = 1
    k_max = 200
    coeff_ampl_min = 1e-16
    '''
        SYMMETRIES
    '''

    Sym_list = []
    the_lcm = m.lcm(*nbpl)
    SymName = None
    Sym_list, nbody = choreo.Make2DChoreoSymManyLoops(nbpl=nbpl,
                                                      SymName=SymName)

    # mass = np.ones((nbody))*mass_mul

    # ibody = 0
    # rot_angle = 0.
    # s = -1
    # st = -1

    # Sym_list.append(ChoreoSym(
    # LoopTarget=ibody,
    # LoopSource=ibody,
    # SpaceRot = np.array([[s*np.cos(rot_angle),-s*np.sin(rot_angle)],[np.sin(rot_angle),np.cos(rot_angle)]],dtype=np.float64),
    # TimeRev=st,
    # TimeShift=fractions.Fraction(numerator=0,denominator=1)
    # ))

    # MomConsImposed = True
    MomConsImposed = False
    '''
        I/O
    '''

    file_basename = ''

    store_folder = os.path.join(__PROJECT_ROOT__, 'Target_res/')
    store_folder = store_folder + str(nbody)
    if not (os.path.isdir(store_folder)):
        os.makedirs(store_folder)

    save_init = False
    # save_init = True

    Save_img = True
    # Save_img = False

    # Save_thumb = True
    Save_thumb = False

    # img_size = (12,12) # Image size in inches
    img_size = (8, 8)  # Image size in inches
    thumb_size = (2, 2)  # Image size in inches

    nint_plot_img = 10000

    color = "body"
    # color = "loop"
    # color = "velocity"
    # color = "all"

    Save_anim = True
    # Save_anim = False

    vid_size = (8, 8)  # Image size in inches
    nint_plot_anim = 2 * 2 * 2 * 3 * 3 * 5
    # nperiod_anim = 1./nbody
    dnint = 30

    nint_plot_img = nint_plot_anim * dnint

    try:
        the_lcm
    except NameError:
        period_div = 1.
    else:
        period_div = the_lcm

    nperiod_anim = 1. / period_div

    Plot_trace_anim = True
    # Plot_trace_anim = False

    # Save_Newton_Error = True
    Save_Newton_Error = False
    ''' 
        SOLVER & SOLVER LOOP
    '''

    Use_exact_Jacobian = True
    # Use_exact_Jacobian = False

    Look_for_duplicates = True
    # Look_for_duplicates = False

    Check_Escape = True
    # Check_Escape = False

    n_reconverge_it_max = 4
    # n_reconverge_it_max = 1

    # ncoeff_init = 300
    # ncoeff_init = 600
    ncoeff_init = 900
    # ncoeff_init = 1800

    disp_scipy_opt = False
    # disp_scipy_opt = True

    max_norm_on_entry = 1e20

    Newt_err_norm_max = 1e-10
    # Newt_err_norm_max_save = Newt_err_norm_max*1000
    Newt_err_norm_max_save = 1e-1

    duplicate_eps = 1e-8

    krylov_method = 'lgmres'
    # krylov_method = 'gmres'
    # krylov_method = 'bicgstab'
    # krylov_method = 'cgs'
    # krylov_method = 'minres'

    # line_search = 'armijo'
    line_search = 'wolfe'

    gradtol_list = [1e-3, 1e-5, 1e-7, 1e-9, 1e-11, 1e-13, 1e-15]
    maxiter_list = [1000, 1000, 1000, 500, 500, 300, 100]
    inner_maxiter_list = [30, 50, 60, 70, 80, 100, 100]
    outer_k_list = [5, 5, 5, 5, 7, 7, 7]
    store_outer_Av_list = [False, False, False, False, True, True, True]

    n_optim_param = len(gradtol_list)

    gradtol_max = 100 * gradtol_list[n_optim_param - 1]
    # foundsol_tol = 1000*gradtol_list[0]
    foundsol_tol = 1e10

    n_grad_change = 1.
    # n_grad_change = 1.5

    freq_erase_dict = 1000
    hash_dict = {}

    # n_opt_max = 1
    # n_opt_max = 5
    n_opt_max = 1e10

    all_kwargs = choreo.Pick_Named_Args_From_Dict(choreo.Find_Choreo,
                                                  dict(globals(), **locals()))

    choreo.Find_Choreo(**all_kwargs)
def main():


    input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/3/')
    # input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/copy/')
    # input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/keep/13')

#     ''' Include all files in tree '''
#     input_names_list = []
#     for root, dirnames, filenames in os.walk(input_folder):
# 
#         for filename in filenames:
#             file_path = os.path.join(root, filename)
#             file_root, file_ext = os.path.splitext(os.path.basename(file_path))
# 
#             if (file_ext == '.txt' ):
# 
#                 file_path = os.path.join(root, file_root)
#                 the_name = file_path[len(input_folder):]
#                 input_names_list.append(the_name)


    ''' Include all files in folder '''
    input_names_list = []
    for file_path in os.listdir(input_folder):
        file_path = os.path.join(input_folder, file_path)
        file_root, file_ext = os.path.splitext(os.path.basename(file_path))
        
        if (file_ext == '.txt' ):
            input_names_list.append(file_root)

    # input_names_list = ['00006']

    store_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/mod')
    # store_folder = input_folder

    Save_All_Coeffs = True
    # Save_All_Coeffs = False

    Save_All_Coeffs_No_Sym = True
    # Save_All_Coeffs_No_Sym = False

    # Save_Newton_Error = True
    Save_Newton_Error = False

    Save_img = True
    # Save_img = False
# 
#     Save_thumb = True
    Save_thumb = False

    # img_size = (12,12) # Image size in inches
    img_size = (8,8) # Image size in inches
    thumb_size = (2,2) # Image size in inches
    
    color = "body"
    # color = "loop"
    # color = "velocity"
    # color = "all"

    Save_anim = True
    # Save_anim = False

    Save_ODE_anim = True
    # Save_ODE_anim = False

    # ODE_method = 'RK23'
    # ODE_method = 'RK45'
    ODE_method = 'DOP853'
    # ODE_method = 'Radau'
    # ODE_method = 'BDF'

    atol_ode = 1e-10
    rtol_ode = 1e-12

    vid_size = (8,8) # Image size in inches
    # nint_plot_anim = 2*2*2*3*3
    nint_plot_anim = 2*2*2*3*3*5
    dnint = 30

    nint_plot_img = nint_plot_anim * dnint


    min_n_steps_ode = 1*nint_plot_anim

    try:
        the_lcm
    except NameError:
        period_div = 1.
    else:
        period_div = the_lcm
# 
    nperiod_anim = 1.
    # nperiod_anim = 1./period_div

    Plot_trace_anim = True
    # Plot_trace_anim = False

    GradActionThresh = 1e-8

    for the_name in input_names_list:

        print('')
        print(the_name)

        input_filename = os.path.join(input_folder,the_name)
        input_filename = input_filename + '.npy'

        bare_name = the_name.split('/')[-1]

        all_coeffs = np.load(input_filename)

        theta = 2*np.pi * 0.5
        SpaceRevscal = 1.
        SpaceRot = np.array( [[SpaceRevscal*np.cos(theta) , SpaceRevscal*np.sin(theta)] , [-np.sin(theta),np.cos(theta)]])
        TimeRev = 1.
        TimeShiftNum = 0
        TimeShiftDen = 2

        all_coeffs = choreo.Transform_Coeffs(SpaceRot, TimeRev, TimeShiftNum, TimeShiftDen, all_coeffs)

        ncoeff_init = all_coeffs.shape[2]

        the_i = -1
        the_i_max = 20

        Gradaction_OK = False

        while (not(Gradaction_OK) and (the_i < the_i_max)):

            the_i += 1

            # p = 1
            p_list = range(the_i_max)
            # p_list = [3]
            p = p_list[the_i%len(p_list)]

            nc = 3

            mm = 1
            # mm_list = [1]
            # mm = mm_list[the_i%len(mm_list)]

            nbpl=[nc]

            SymType = {
                'name'  : 'D',
                'n'     : nc,
                'm'     : mm,
                'l'     : 0,
                'k'     : 1,
                'p'     : p,
                'q'     : nc,
            }
            Sym_list = choreo.Make2DChoreoSym(SymType,range(nc))
            nbody = nc

            mass = np.ones((nbody),dtype=np.float64)

            # MomConsImposed = True
            MomConsImposed = False

            n_reconverge_it_max = 0
            n_grad_change = 1.

            callfun = choreo.setup_changevar(nbody,ncoeff_init,mass,n_reconverge_it_max,Sym_list=Sym_list,MomCons=MomConsImposed,n_grad_change=n_grad_change,CrashOnIdentity=False)

            x = choreo.Package_all_coeffs(all_coeffs,callfun)

            Action,Gradaction = choreo.Compute_action(x,callfun)

            Gradaction_OK = (np.linalg.norm(Gradaction) < GradActionThresh)

        if not(Gradaction_OK):
            raise(ValueError('Correct Symmetries not found'))

        filename_output = os.path.join(store_folder,bare_name)

        print('Saving solution as '+filename_output+'.*')

        choreo.Write_Descriptor(x,callfun,filename_output+'.txt')
        
        if Save_img :
            choreo.plot_all_2D(x,nint_plot_img,callfun,filename_output+'.png',fig_size=img_size,color=color)
        
        if Save_thumb :
            choreo.plot_all_2D(x,nint_plot_img,callfun,filename_output+'_thumb.png',fig_size=thumb_size,color=color)
            
        if Save_anim :
            choreo.plot_all_2D_anim(x,nint_plot_anim,callfun,filename_output+'.mp4',nperiod_anim,Plot_trace=Plot_trace_anim,fig_size=vid_size,dnint=dnint)

        if Save_Newton_Error :
            choreo.plot_Newton_Error(x,callfun,filename_output+'_newton.png')
        
        if Save_All_Coeffs:

            np.save(filename_output+'.npy',all_coeffs)

        if Save_All_Coeffs_No_Sym:
            
            all_coeffs_nosym = choreo.RemoveSym(x,callfun)

            np.save(filename_output+'_nosym.npy',all_coeffs_nosym)

        if Save_ODE_anim:
            
            y0 = choreo.Compute_init_pos_vel(x,callfun).reshape(-1)

            t_eval = np.array([i/nint_plot_img for i in range(nint_plot_img)])

            ode_res = scipy.integrate.solve_ivp(fun=choreo.Compute_ODE_RHS, t_span=(0.,1.), y0=y0, method=ODE_method, t_eval=t_eval, dense_output=False, events=None, vectorized=False, args=callfun,max_step=1./min_n_steps_ode,atol=atol_ode,rtol=rtol_ode)

            all_pos_vel = ode_res['y'].reshape(2,nbody,choreo.ndim,nint_plot_img)
            all_pos_ode = all_pos_vel[0,:,:,:]
            
            choreo.plot_all_2D_anim(x,nint_plot_anim,callfun,filename_output+'_ode.mp4',nperiod_anim,Plot_trace=Plot_trace_anim,fig_size=vid_size,dnint=dnint,all_pos_trace=all_pos_ode,all_pos_points=all_pos_ode)


    
        y0 = choreo.Compute_init_pos_vel(x,callfun).reshape(-1)
        t_eval = np.array([0.,1.])
        ode_res = scipy.integrate.solve_ivp(fun=choreo.Compute_ODE_RHS, t_span=(0.,1.), y0=y0, method=ODE_method, t_eval=t_eval, dense_output=False, events=None, vectorized=False, args=callfun,max_step=1./min_n_steps_ode,atol=atol_ode,rtol=rtol_ode)
        all_pos_vel = ode_res['y'].reshape(2,nbody,choreo.ndim,2)
        all_pos_ode = all_pos_vel[0,:,:,:]
        print(np.linalg.norm(all_pos_ode[:,:,0]-all_pos_ode[:,:,1]))
def main():

    input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/mod')
    # input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/10/')
    # input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/copy/')
    # input_folder = os.path.join(__PROJECT_ROOT__,'Sniff_all_sym/keep/13')

#     ''' Include all files in tree '''
#     input_names_list = []
#     for root, dirnames, filenames in os.walk(input_folder):
# 
#         for filename in filenames:
#             file_path = os.path.join(root, filename)
#             file_root, file_ext = os.path.splitext(os.path.basename(file_path))
# 
#             if (file_ext == '.txt' ):
# 
#                 file_path = os.path.join(root, file_root)
#                 the_name = file_path[len(input_folder):]
#                 input_names_list.append(the_name)


    ''' Include all files in folder '''
    input_names_list = []
    for file_path in os.listdir(input_folder):
        file_path = os.path.join(input_folder, file_path)
        file_root, file_ext = os.path.splitext(os.path.basename(file_path))
        
        if (file_ext == '.txt' ):
            # input_names_list.append(file_root)
            input_names_list.append(file_root+'_nosym')

    # input_names_list = ['00006']
    # input_names_list = ['00006_nosym']

    GradActionThresh = 1e-8

    for the_name in input_names_list:

        print('')
        print(the_name)

        input_filename = os.path.join(input_folder,the_name)
        input_filename = input_filename + '.npy'

        bare_name = the_name.split('/')[-1]

        all_coeffs = np.load(input_filename)

        theta = 2*np.pi * 0.5
        SpaceRevscal = 1.
        SpaceRot = np.array( [[SpaceRevscal*np.cos(theta) , SpaceRevscal*np.sin(theta)] , [-np.sin(theta),np.cos(theta)]])
        TimeRev = 1.
        TimeShiftNum = 0
        TimeShiftDen = 2

        all_coeffs = choreo.Transform_Coeffs(SpaceRot, TimeRev, TimeShiftNum, TimeShiftDen, all_coeffs)

        ncoeff_init = all_coeffs.shape[2]

        the_i = -1
        the_i_max = 0

        Gradaction_OK = False

        while (not(Gradaction_OK) and (the_i < the_i_max)):

            the_i += 1



            p = 1
            # p_list = range(the_i_max)
            # p_list = [3]
            # p = p_list[the_i%len(p_list)]

            nc = 3

            mm = 1
            # mm_list = [1]
            # mm = mm_list[the_i%len(mm_list)]

            # nbpl=[nc]
            nbpl=[1 for i in range(nc)]
# 
#             SymType = {
#                 'name'  : 'D',
#                 'n'     : nc,
#                 'm'     : mm,
#                 'l'     : 0,
#                 'k'     : 1,
#                 'p'     : p,
#                 'q'     : nc,
#             }
#             Sym_list = choreo.Make2DChoreoSym(SymType,range(nc))
#             nbody = nc

            Sym_list,nbody = choreo.Make2DChoreoSymManyLoops(nbpl=nbpl,SymName='C')

            mass = np.ones((nbody),dtype=np.float64)

            # MomConsImposed = True
            MomConsImposed = False

            n_reconverge_it_max = 0
            n_grad_change = 1.

            callfun = choreo.setup_changevar(nbody,ncoeff_init,mass,n_reconverge_it_max,Sym_list=Sym_list,MomCons=MomConsImposed,n_grad_change=n_grad_change,CrashOnIdentity=False)

            x = choreo.Package_all_coeffs(all_coeffs,callfun)

            Action,Gradaction = choreo.Compute_action(x,callfun)

            Gradaction_OK = (np.linalg.norm(Gradaction) < GradActionThresh)

        if not(Gradaction_OK):
            raise(ValueError('Correct Symmetries not found'))

        n_eig = 10

        HessMat = choreo.Compute_action_hess_LinOpt(x,callfun)
        w ,v = scipy.sparse.linalg.eigsh(HessMat,k=n_eig,which='SA')
        print(w)
Beispiel #4
0
def main(the_i=0):

    # if (the_i != 0):
    #
    #     preprint_msg = str(the_i).zfill(2)+' : '
    #
    #     def print(*args, **kwargs):
    #         """My custom print() function."""
    #         builtins.print(preprint_msg,end='')
    #         return builtins.print(*args, **kwargs)
    #
    file_basename = ''

    np.random.seed(int(time.time() * 10000) % 5000)

    LookForTarget = True

    # slow_base_filename = './data/1_lone_wolf.npy'
    # slow_base_filename = './data/1_1_short_ellipse.npy'
    # slow_base_filename = './data/1_1_long_ellipse.npy'
    slow_base_filename = './data/1_1_cercle.npy'
    # slow_base_filename = './data/2_cercle.npy'
    # slow_base_filename = './data/3_cercle.npy'
    # slow_base_filename = './data/3_huit.npy'
    # slow_base_filename = './data/3_heart.npy'
    # slow_base_filename = './data/4_trefoil.npy'
    # slow_base_filename = './data/1x4_trefoil.npy'

    # fast_base_filename_list = ['./data/1_lone_wolf.npy'    ]
    # fast_base_filename_list = ['./data/2_cercle.npy'       ]
    # fast_base_filename_list = ['./data/3_cercle.npy'       ]
    # fast_base_filename_list = ['./data/3_huit.npy'         ]
    # fast_base_filename_list = ['./data/3_heart.npy'        ]
    # fast_base_filename_list = ['./data/3_dbl_heart.npy'    ]
    # fast_base_filename_list = ['./data/4_13_2_2_cercle.npy']
    # fast_base_filename_list = ['./data/4_trefoil.npy']

    # fast_base_filename_list = ['./data/2_cercle.npy','./data/2_cercle.npy'    ]
    # fast_base_filename_list = ['./data/3_cercle.npy' ,'./data/3_cercle.npy'     ]
    fast_base_filename_list = ['./data/2_cercle.npy', './data/3_huit.npy']
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ]

    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ,'./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/2_cercle.npy'    ,'./data/1_lone_wolf.npy','./data/2_cercle.npy'    ]
    # fast_base_filename_list = ['./data/1_lone_wolf.npy','./data/1_lone_wolf.npy'    ,'./data/1_lone_wolf.npy','./data/3_huit.npy'    ]

    nfl = len(fast_base_filename_list)

    mass_mul = [3, 2]
    nTf = [13, 13]
    nbs = [1, 1]
    nbf = [2, 3]

    epsmul = 0.

    # mass_mul = [1,1,1,1]
    # mass_mul = [1.,1.+epsmul,1.+2*epsmul,1.+3*epsmul]
    # nTf = [1,1,1,1]
    # nbs = [1,1,1,1]
    # nbf = [1,1,1,1]

    # mass_mul = [1,1]
    # mass_mul = [3,2]
    # nTf = [37,37]
    # nbs = [1,1]
    # nbf = [2,3]

    mul_loops_ini = True
    # mul_loops_ini = False
    # mul_loops_ini = (np.random.random() > 1./2.)

    mul_loops = [mul_loops_ini for _ in range(nfl)]

    Remove_Choreo_Sym = mul_loops
    # Remove_Choreo_Sym = [False,False]
    # Remove_Choreo_Sym = [False,False]

    Rotate_fast_with_slow = True
    # Rotate_fast_with_slow = False
    # Rotate_fast_with_slow = (np.random.random() > 1./2.)

    # Optimize_Init = True
    Optimize_Init = False
    # Optimize_Init = (np.random.random() > 1./2.)

    Randomize_Fast_Init = True
    # Randomize_Fast_Init = False

    all_coeffs_slow_load = np.load(slow_base_filename)
    all_coeffs_fast_load_list = []

    nbpl = []
    mass = []
    for i in range(nfl):
        fast_base_filename = fast_base_filename_list[i]
        all_coeffs_fast_load = np.load(fast_base_filename)

        if Remove_Choreo_Sym[i]:

            all_coeffs_fast_load_list_temp = []

            for ib in range(nbf[i]):

                tshift = (ib * 1.0) / nbf[i]

                all_coeffs_fast_load_list_temp.append(
                    choreo.Transform_Coeffs(np.identity(2), 1, tshift, 1,
                                            all_coeffs_fast_load))

                nbpl.append(nbs[i])
                mass.extend([mass_mul[i] for j in range(nbs[i])])

            all_coeffs_fast_load_list.append(
                np.concatenate(all_coeffs_fast_load_list_temp, axis=0))

        else:
            all_coeffs_fast_load_list.append(all_coeffs_fast_load)
            nbpl.append(nbs[i] * nbf[i])
            mass.extend([mass_mul[i] for j in range(nbs[i] * nbf[i])])

    mass = np.array(mass, dtype=np.float64)

    Sym_list = []
    the_lcm = m.lcm(*nbpl)
    SymName = None
    Sym_list, nbody = choreo.Make2DChoreoSymManyLoops(nbpl=nbpl,
                                                      SymName=SymName)

    # mass = np.ones((nbody))*mass_mul

    #     for ibody in range(6):
    #     # for ibody in [0,2]:
    #     # for ibody in [0]:
    #
    #         l_rot = 11
    #         k_rot = 13
    #         rot_angle = 2* np.pi * l_rot / k_rot
    #         s = 1
    #         st = 1
    #
    #         Sym_list.append(choreo.ChoreoSym(
    #                 LoopTarget=ibody,
    #                 LoopSource=ibody,
    #                 SpaceRot = np.array([[s*np.cos(rot_angle),-s*np.sin(rot_angle)],[np.sin(rot_angle),np.cos(rot_angle)]],dtype=np.float64),
    #                 TimeRev=st,
    #                 TimeShift=fractions.Fraction(numerator=1,denominator=k_rot)
    #             ))
    #

    #     MomConsImposed = True
    MomConsImposed = False

    store_folder = './Target_res/'
    store_folder = store_folder + str(nbody)
    if not (os.path.isdir(store_folder)):
        os.makedirs(store_folder)

    Use_exact_Jacobian = True
    # Use_exact_Jacobian = False

    Look_for_duplicates = True
    # Look_for_duplicates = False

    Check_Escape = True
    # Check_Escape = False

    # Penalize_Escape = True
    Penalize_Escape = False
    #
    # save_first_init = False
    save_first_init = True
    #
    save_all_inits = False
    # save_all_inits = True

    Save_img = True
    # Save_img = False

    Save_thumb = True
    # Save_thumb = False

    # img_size = (12,12) # Image size in inches
    img_size = (8, 8)  # Image size in inches
    thumb_size = (2, 2)  # Image size in inches

    nint_plot_img = 10000

    color = "body"
    # color = "loop"
    # color = "velocity"
    # color = "all"

    Save_anim = True
    # Save_anim = False

    vid_size = (8, 8)  # Image size in inches
    nint_plot_anim = 2 * 2 * 2 * 3 * 3 * 5
    # nperiod_anim = 1./nbody
    dnint = 30

    nint_plot_img = nint_plot_anim * dnint

    try:
        the_lcm
    except NameError:
        period_div = 1.
    else:
        period_div = the_lcm

    nperiod_anim = 1. / period_div

    Plot_trace_anim = True
    # Plot_trace_anim = False

    # Save_Newton_Error = True
    Save_Newton_Error = False

    n_reconverge_it_max = 3
    # n_reconverge_it_max = 1

    # ncoeff_init = 102
    # ncoeff_init = 800
    # ncoeff_init = 201
    # ncoeff_init = 300
    # ncoeff_init = 600
    ncoeff_init = 900
    # ncoeff_init = 1800
    # ncoeff_init = 3600
    # ncoeff_init = 1206
    # ncoeff_init = 90

    disp_scipy_opt = False
    # disp_scipy_opt = True

    max_norm_on_entry = 1e20

    Newt_err_norm_max = 1e-10
    # Newt_err_norm_max_save = Newt_err_norm_max*1000
    Newt_err_norm_max_save = 1e-1

    duplicate_eps = 1e-8

    krylov_method = 'lgmres'
    # krylov_method = 'gmres'
    # krylov_method = 'bicgstab'
    # krylov_method = 'cgs'
    # krylov_method = 'minres'

    # line_search = 'armijo'
    line_search = 'wolfe'

    gradtol_list = [1e-3, 1e-5, 1e-7, 1e-9, 1e-11, 1e-13, 1e-15]
    inner_maxiter_list = [30, 50, 60, 70, 80, 100, 100]
    maxiter_list = [1000, 1000, 1000, 500, 500, 300, 100]
    outer_k_list = [5, 5, 5, 5, 7, 7, 7]
    store_outer_Av_list = [False, False, False, False, True, True, True]

    n_optim_param = len(gradtol_list)

    gradtol_max = 100 * gradtol_list[n_optim_param - 1]
    # foundsol_tol = 1000*gradtol_list[0]
    foundsol_tol = 1e10

    escape_fac = 1e0
    # escape_fac = 1e-1
    # escape_fac = 1e-2
    # escape_fac = 1e-3
    # escape_fac = 1e-4
    # escape_fac = 1e-5
    # escape_fac = 0
    escape_min_dist = 1
    escape_pow = 2.0
    # escape_pow = 2.5
    # escape_pow = 1.5
    # escape_pow = 0.5

    n_grad_change = 1.
    # n_grad_change = 1.5

    coeff_ampl_o = 1e-16
    k_infl = 200
    k_max = 800
    coeff_ampl_min = 1e-16

    freq_erase_dict = 1000
    hash_dict = {}

    n_opt = 0
    n_opt_max = 1
    # n_opt_max = 5
    # n_opt_max = 0

    all_kwargs = choreo.Pick_Named_Args_From_Dict(choreo.Find_Choreo,
                                                  dict(globals(), **locals()))

    choreo.Find_Choreo(**all_kwargs)