Beispiel #1
0
def test_readout_noise_after_moment():
    program = cirq.Circuit()
    qubits = cirq.LineQubit.range(3)
    program.append([
        cirq.H(qubits[0]),
        cirq.CNOT(qubits[0], qubits[1]),
        cirq.CNOT(qubits[1], qubits[2])
    ])
    program.append(
        [
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2'),
        ],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )

    # Use noise model to generate circuit
    depol_noise = ccn.DepolarizingNoiseModel(depol_prob=0.01)
    readout_noise = ccn.ReadoutNoiseModel(bitflip_prob=0.05)
    noisy_circuit = cirq.Circuit(depol_noise.noisy_moments(program, qubits))
    noisy_circuit = cirq.Circuit(
        readout_noise.noisy_moments(noisy_circuit, qubits))

    # Insert channels explicitly
    true_noisy_program = cirq.Circuit()
    true_noisy_program.append([cirq.H(qubits[0])])
    true_noisy_program.append(
        [
            cirq.DepolarizingChannel(0.01).on(q).with_tags(ops.VirtualTag())
            for q in qubits
        ],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append([cirq.CNOT(qubits[0], qubits[1])])
    true_noisy_program.append(
        [
            cirq.DepolarizingChannel(0.01).on(q).with_tags(ops.VirtualTag())
            for q in qubits
        ],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append([cirq.CNOT(qubits[1], qubits[2])])
    true_noisy_program.append(
        [
            cirq.DepolarizingChannel(0.01).on(q).with_tags(ops.VirtualTag())
            for q in qubits
        ],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append([
        cirq.BitFlipChannel(0.05).on(q).with_tags(ops.VirtualTag())
        for q in qubits
    ])
    true_noisy_program.append([
        cirq.measure(qubits[0], key='q0'),
        cirq.measure(qubits[1], key='q1'),
        cirq.measure(qubits[2], key='q2'),
    ])
    _assert_equivalent_op_tree(true_noisy_program, noisy_circuit)
Beispiel #2
0
def test_per_qubit_readout_error_from_data():
    # Generate the readout error noise model from calibration data.
    calibration = cirq.google.Calibration(_CALIBRATION_DATA)
    noise_model = simple_noise_from_calibration_metrics(
        calibration=calibration, readout_error_noise=True)

    # Create the circuit and apply the noise model.
    qubits = [cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 0)]
    program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment([
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2')
        ]))
    noisy_circuit = cirq.Circuit(noise_model.noisy_moments(program, qubits))

    # Insert channels explicitly to construct expected output.
    expected_program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment([
            cirq.BitFlipChannel(0.004).on(qubits[0]),
            cirq.BitFlipChannel(0.005).on(qubits[1]),
            cirq.BitFlipChannel(0.006).on(qubits[2])
        ]),
        cirq.Moment([
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2')
        ]))
    _assert_equivalent_op_tree(expected_program, noisy_circuit)
def test_per_qubit_readout_decay_from_data():
    # Generate the readout decay noise model from calibration data.
    calibration = cirq.google.Calibration(_CALIBRATION_DATA)
    noise_model = simple_noise_from_calibration_metrics(
        calibration=calibration, readout_decay_noise=True)

    # Create the circuit and apply the noise model.
    qubits = [cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 0)]
    program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment([
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2')
        ]))
    noisy_circuit = cirq.Circuit(noise_model.noisy_moments(program, qubits))

    # Insert channels explicitly to construct expected output.
    decay_prob = [1 - exp(-1 / 0.007), 1 - exp(-1 / 0.008), 1 - exp(-1 / 0.009)]
    expected_program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment([
            cirq.AmplitudeDampingChannel(decay_prob[i]).on(qubits[i])
            for i in range(3)
        ]),
        cirq.Moment([
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2')
        ]))
    _assert_equivalent_op_tree(expected_program, noisy_circuit)
def test_per_qubit_depol_noise_from_data():
    # Generate the depolarization noise model from calibration data.
    calibration = cirq.google.Calibration(_CALIBRATION_DATA)
    noise_model = simple_noise_from_calibration_metrics(calibration=calibration, depol_noise=True)

    # Create the circuit and apply the noise model.
    qubits = [cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 0)]
    program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment([cirq.Z(qubits[1]).with_tags(ops.VirtualTag())]),
        cirq.Moment(
            [
                cirq.measure(qubits[0], key='q0'),
                cirq.measure(qubits[1], key='q1'),
                cirq.measure(qubits[2], key='q2'),
            ]
        ),
    )
    noisy_circuit = cirq.Circuit(noise_model.noisy_moments(program, qubits))

    # Insert channels explicitly to construct expected output.
    expected_program = cirq.Circuit(
        cirq.Moment([cirq.H(qubits[0])]),
        cirq.Moment([cirq.DepolarizingChannel(DEPOL_001).on(qubits[0])]),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[1])]),
        cirq.Moment(
            [
                cirq.DepolarizingChannel(DEPOL_001).on(qubits[0]),
                cirq.DepolarizingChannel(DEPOL_002).on(qubits[1]),
            ]
        ),
        cirq.Moment([cirq.CNOT(qubits[0], qubits[2])]),
        cirq.Moment(
            [
                cirq.DepolarizingChannel(DEPOL_001).on(qubits[0]),
                cirq.DepolarizingChannel(DEPOL_003).on(qubits[2]),
            ]
        ),
        cirq.Moment([cirq.Z(qubits[1]).with_tags(ops.VirtualTag())]),
        cirq.Moment(
            [
                cirq.measure(qubits[0], key='q0'),
                cirq.measure(qubits[1], key='q1'),
                cirq.measure(qubits[2], key='q2'),
            ]
        ),
    )
    _assert_equivalent_op_tree(expected_program, noisy_circuit)
Beispiel #5
0
def test_aggregate_decay_noise_after_moment():
    program = cirq.Circuit()
    qubits = cirq.LineQubit.range(3)
    program.append([
        cirq.H(qubits[0]),
        cirq.CNOT(qubits[0], qubits[1]),
        cirq.CNOT(qubits[1], qubits[2])
    ])
    program.append(
        [
            cirq.measure(qubits[0], key='q0'),
            cirq.measure(qubits[1], key='q1'),
            cirq.measure(qubits[2], key='q2'),
        ],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )

    # Use noise model to generate circuit
    noise_model = ccn.DepolarizingWithDampedReadoutNoiseModel(
        depol_prob=0.01, decay_prob=0.02, bitflip_prob=0.05)
    noisy_circuit = cirq.Circuit(noise_model.noisy_moments(program, qubits))

    # Insert channels explicitly
    true_noisy_program = cirq.Circuit()
    true_noisy_program.append([cirq.H(qubits[0])])
    true_noisy_program.append(
        [cirq.DepolarizingChannel(0.01).on(q) for q in qubits],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append([cirq.CNOT(qubits[0], qubits[1])])
    true_noisy_program.append(
        [cirq.DepolarizingChannel(0.01).on(q) for q in qubits],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append([cirq.CNOT(qubits[1], qubits[2])])
    true_noisy_program.append(
        [cirq.DepolarizingChannel(0.01).on(q) for q in qubits],
        strategy=cirq.InsertStrategy.NEW_THEN_INLINE,
    )
    true_noisy_program.append(
        [cirq.AmplitudeDampingChannel(0.02).on(q) for q in qubits])
    true_noisy_program.append(
        [cirq.BitFlipChannel(0.05).on(q) for q in qubits])
    true_noisy_program.append([
        cirq.measure(qubits[0], key='q0'),
        cirq.measure(qubits[1], key='q1'),
        cirq.measure(qubits[2], key='q2'),
    ])
    _assert_equivalent_op_tree(true_noisy_program, noisy_circuit)