Beispiel #1
0
def test_benchmark_2q_xeb_fidelities_parallel():
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5,
        two_qubit_gate=cirq.ISWAP**0.5,
        max_cycle_depth=4)
    cycle_depths = [2, 3, 4]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(2, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits),
        n_combinations=2,
        device_graph=graph,
        random_state=10)

    sampled_df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(),
        circuits=circuits,
        cycle_depths=cycle_depths,
        combinations_by_layer=combs,
    )
    fid_df = benchmark_2q_xeb_fidelities(sampled_df, circuits, cycle_depths)
    n_pairs = sum(len(c.pairs) for c in combs)
    assert len(fid_df) == len(cycle_depths) * n_pairs

    fit_df = fit_exponential_decays(fid_df)
    for _, row in fit_df.iterrows():
        assert list(row['cycle_depths']) == list(cycle_depths)
        assert len(row['fidelities']) == len(cycle_depths)
Beispiel #2
0
def test_sample_2q_parallel_xeb_circuits_error_bad_qubits():
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5,
        two_qubit_gate=cirq.ISWAP**0.5,
        max_cycle_depth=10,
        q0=cirq.GridQubit(0, 0),
        q1=cirq.GridQubit(1, 1),
    )
    cycle_depths = [10]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits),
        n_combinations=5,
        device_graph=graph,
        random_state=10,
    )

    with pytest.raises(
            ValueError,
            match=r'.*each operating on LineQubit\(0\) and LineQubit\(1\)'):
        _ = sample_2q_xeb_circuits(
            sampler=cirq.Simulator(),
            circuits=circuits,
            cycle_depths=cycle_depths,
            combinations_by_layer=combs,
        )
Beispiel #3
0
def test_sample_2q_parallel_xeb_circuits():
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5,
        two_qubit_gate=cirq.ISWAP**0.5,
        max_cycle_depth=10)
    cycle_depths = [10]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits),
        n_combinations=5,
        device_graph=graph,
        random_state=10,
    )

    df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(),
        circuits=circuits,
        cycle_depths=cycle_depths,
        combinations_by_layer=combs,
    )
    n_pairs = sum(len(c.pairs) for c in combs)
    assert len(df) == len(cycle_depths) * len(circuits) * n_pairs
    for (circuit_i, cycle_depth), row in df.iterrows():
        assert 0 <= circuit_i < len(circuits)
        assert cycle_depth in cycle_depths
        assert len(row['sampled_probs']) == 4
        assert np.isclose(np.sum(row['sampled_probs']), 1)
        assert 0 <= row['layer_i'] < 4
        assert 0 <= row[
            'pair_i'] < 2  # in 3x2 graph, there's a max of 2 pairs per layer
    assert len(df['pair'].unique()) == 7  # seven pairs in 3x2 graph
def test_get_random_combinations_for_small_device():
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 1))
    n_combinations = 4
    combinations = get_random_combinations_for_device(
        n_library_circuits=3,
        n_combinations=n_combinations,
        device_graph=graph,
        random_state=99,
    )
    assert len(combinations) == 2  # 3x1 device only fits two layers
def test_random_combinations_layer_circuit_vs_device():
    # Random combinations from layer circuit is the same as getting it directly from graph
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 3))
    layer_circuit = get_grid_interaction_layer_circuit(graph)
    combs1 = get_random_combinations_for_layer_circuit(
        n_library_circuits=10, n_combinations=10, layer_circuit=layer_circuit, random_state=1
    )
    combs2 = get_random_combinations_for_device(
        n_library_circuits=10, n_combinations=10, device_graph=graph, random_state=1
    )
    for comb1, comb2 in zip(combs1, combs2):
        assert comb1.pairs == comb2.pairs
        assert np.all(comb1.combinations == comb2.combinations)
Beispiel #6
0
def test_sample_2q_parallel_xeb_circuits(tmpdir):
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5,
        two_qubit_gate=cirq.ISWAP**0.5,
        max_cycle_depth=10)
    cycle_depths = [5, 10]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits),
        n_combinations=5,
        device_graph=graph,
        random_state=10,
    )

    df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(),
        circuits=circuits,
        cycle_depths=cycle_depths,
        combinations_by_layer=combs,
        dataset_directory=f'{tmpdir}/my_dataset',
    )

    n_pairs = sum(len(c.pairs) for c in combs)
    assert len(df) == len(cycle_depths) * len(circuits) * n_pairs
    for (circuit_i, cycle_depth), row in df.iterrows():
        assert 0 <= circuit_i < len(circuits)
        assert cycle_depth in cycle_depths
        assert len(row['sampled_probs']) == 4
        assert np.isclose(np.sum(row['sampled_probs']), 1)
        assert 0 <= row['layer_i'] < 4
        assert 0 <= row[
            'pair_i'] < 2  # in 3x2 graph, there's a max of 2 pairs per layer
    assert len(df['pair'].unique()) == 7  # seven pairs in 3x2 graph

    # Test loading from dataset
    chunks = [
        record for fn in glob.glob(f'{tmpdir}/my_dataset/*')
        for record in cirq.read_json(fn)
    ]
    df2 = pd.DataFrame(chunks).set_index(['circuit_i', 'cycle_depth'])
    df2['pair'] = [tuple(row['pair']) for _, row in df2.iterrows()]
    actual_index_names = ['layer_i', 'pair_i', 'combination_i', 'cycle_depth']
    _assert_frame_approx_equal(
        df.reset_index().set_index(actual_index_names),
        df2.reset_index().set_index(actual_index_names),
        atol=1e-5,
    )
def test_get_random_combinations_for_device():
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 3))
    n_combinations = 4
    combinations = get_random_combinations_for_device(
        n_library_circuits=3,
        n_combinations=n_combinations,
        device_graph=graph,
        random_state=99,
    )
    assert len(combinations) == 4  # degree-four graph
    for i, comb in enumerate(combinations):
        assert comb.combinations.shape[0] == n_combinations
        assert comb.combinations.shape[1] == len(comb.pairs)
        assert np.all(comb.combinations >= 0)
        assert np.all(comb.combinations < 3)  # number of library circuits
        for q0, q1 in comb.pairs:
            assert q0 in cirq.GridQubit.rect(3, 3)
            assert q1 in cirq.GridQubit.rect(3, 3)

        assert cirq.experiments.HALF_GRID_STAGGERED_PATTERN[i] == comb.layer
Beispiel #8
0
def test_sample_2q_parallel_xeb_circuits_bad_circuit_library():
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5, two_qubit_gate=cirq.ISWAP**0.5, max_cycle_depth=10
    )
    cycle_depths = [10]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits) + 100,  # !!! should cause invlaid input
        n_combinations=5,
        device_graph=graph,
        random_state=10,
    )

    with pytest.raises(ValueError, match='.*invalid indices.*'):
        _ = sample_2q_xeb_circuits(
            sampler=cirq.Simulator(),
            circuits=circuits,
            cycle_depths=cycle_depths,
            combinations_by_layer=combs,
        )
Beispiel #9
0
def test_parallel_full_workflow(use_pool):
    circuits = rqcg.generate_library_of_2q_circuits(
        n_library_circuits=5,
        two_qubit_gate=cirq.ISWAP**0.5,
        max_cycle_depth=4,
        random_state=8675309,
    )
    cycle_depths = [2, 3, 4]
    graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(2, 2))
    combs = rqcg.get_random_combinations_for_device(
        n_library_circuits=len(circuits),
        n_combinations=2,
        device_graph=graph,
        random_state=10)

    sampled_df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(),
        circuits=circuits,
        cycle_depths=cycle_depths,
        combinations_by_layer=combs,
    )

    if use_pool:
        pool = multiprocessing.Pool()
    else:
        pool = None

    fids_df_0 = benchmark_2q_xeb_fidelities(sampled_df=sampled_df,
                                            circuits=circuits,
                                            cycle_depths=cycle_depths,
                                            pool=pool)

    options = SqrtISwapXEBOptions(characterize_zeta=False,
                                  characterize_gamma=False,
                                  characterize_chi=False)
    p_circuits = [
        parameterize_circuit(circuit, options) for circuit in circuits
    ]

    result = characterize_phased_fsim_parameters_with_xeb_by_pair(
        sampled_df=sampled_df,
        parameterized_circuits=p_circuits,
        cycle_depths=cycle_depths,
        options=options,
        # super loose tolerances
        fatol=5e-2,
        xatol=5e-2,
        pool=pool,
    )
    if pool is not None:
        pool.terminate()

    assert len(result.optimization_results) == graph.number_of_edges()
    for opt_res in result.optimization_results.values():
        assert np.abs(opt_res.fun) < 0.1  # noiseless simulator

    assert len(
        result.fidelities_df) == len(cycle_depths) * graph.number_of_edges()
    assert np.all(result.fidelities_df['fidelity'] > 0.90)

    before_after_df = before_and_after_characterization(
        fids_df_0, characterization_result=result)
    for _, row in before_after_df.iterrows():
        assert len(row['fidelities_0']) == len(cycle_depths)
        assert len(row['fidelities_c']) == len(cycle_depths)
        assert 0 <= row['a_0'] <= 1
        assert 0 <= row['a_c'] <= 1
        assert 0 <= row['layer_fid_0'] <= 1
        assert 0 <= row['layer_fid_c'] <= 1