Beispiel #1
0
    def test_collocated_NetCDF_Gridded_onto_GASSP(self):
        # First do a collocation of ECHAMHAM onto GASSP
        vars = valid_echamham_variable_1, valid_echamham_variable_2
        filename = escape_colons(valid_echamham_filename)
        sample_file = escape_colons(valid_GASSP_aeroplane_filename)
        sample_var = valid_GASSP_aeroplane_variable
        collocator_and_opts = 'nn[missing_data_for_missing_sample=True],variable=%s' % sample_var
        arguments = [
            'col', ",".join(vars) + ':' + filename,
            sample_file + ':collocator=' + collocator_and_opts, '-o',
            'collocated_gassp'
        ]
        main_arguments = parse_args(arguments)
        col_cmd(main_arguments)

        # Check collocation is the same
        self.ds = netCDF4.Dataset('collocated_gassp.nc')
        col_var1 = self.ds.variables[valid_echamham_variable_1][:]
        col_var2 = self.ds.variables[valid_echamham_variable_2][:]
        # A hand calculated selection of values
        expected_col1 = numpy.ma.masked_invalid([
            float('Nan'),
            float('Nan'),
            float('Nan'), 0.0814601778984, 0.0814601778984
        ])
        compare_masked_arrays(expected_col1, col_var1[:][0:5])
        expected_col2 = numpy.ma.masked_invalid([
            float('Nan'),
            float('Nan'),
            float('Nan'), 0.0741240680218, 0.0741240680218
        ])
        compare_masked_arrays(expected_col2, col_var2[:][0:5])

        # Then do an evaluation using the collocated data:
        args = [
            'eval',
            "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                          'collocated_gassp.nc'),
            "%s=gassp_alias:%s" %
            (valid_GASSP_aeroplane_variable,
             escape_colons(valid_GASSP_aeroplane_filename)),
            "(%s + %s) / gassp_alias " %
            (valid_echamham_variable_1, valid_echamham_variable_2), '1', '-o',
            self.OUTPUT_FILENAME
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)
        self.ds.close()

        # Check correct
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        # A hand calculated selection of values
        expected_result = numpy.ma.masked_invalid(
            [0.00196121983491, 0.00197255626472, 0.00120850731992])

        assert_that(calculated_result.shape, is_((311, )))
        # Check the first 3 vald values
        compare_masked_arrays(expected_result, calculated_result[:][10:13])
        os.remove('collocated_gassp.nc')
Beispiel #2
0
    def test_Aeronet_wavelength_calculation(self):
        # Example from the CIS Phase 3 Software spec:
        # ... a user should be able to write a plugin to calculate the Aeronet AOD at 550nm from the AOD at 500 nm as
        # AOD550 = AOD500 * (550/500)^(-1*Angstrom500-870)"
        # Takes 3s
        args = [
            'eval', 'AOT_500,500-870Angstrom=a550to870:' +
            escape_colons(another_valid_aeronet_filename),
            'AOT_500 * (550.0/500)**(-1*a550to870)', '1', '-o',
            self.OUTPUT_FILENAME
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        # Check correct:
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        expected_result = [
            0.2341039087, 0.2285401152, 0.2228799533, 0.1953746746,
            0.2094051561, 0.1696889668, 0.3137791803, 0.2798929273,
            0.1664194279, 0.1254619092, 0.1258309124, 0.1496960031,
            0.0768447737, 0.0550896430, 0.0534543107, 0.0538315909,
            0.0666742975, 0.0512935449, 0.0699585189, 0.0645033944
        ]
        assert_that(calculated_result.shape, is_((3140, )))
        assert numpy.allclose(expected_result, calculated_result[0:20])
Beispiel #3
0
 def test_CloudSat(self):
     args = ['eval', "%s,%s:%s" % (valid_cloudsat_RVOD_sdata_variable, valid_cloudsat_RVOD_vdata_variable,
                                   escape_colons(valid_cloudsat_RVOD_file)),
             '%s/%s' % (valid_cloudsat_RVOD_sdata_variable, valid_cloudsat_RVOD_vdata_variable), 'ppm', '-o',
             'cloudsat_var:' + self.OUTPUT_FILENAME]
     arguments = parse_args(args)
     evaluate_cmd(arguments)
     self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
     assert_that(self.ds.variables['cloudsat_var'].units, is_('ppm'))
Beispiel #4
0
    def test_can_specify_units_gridded_no_output_var(self):
        args = ['eval', "%s:%s" % (valid_hadgem_variable, escape_colons(valid_hadgem_filename)), "od550aer", "ppm", "-o",
                self.OUTPUT_FILENAME, "-a", "att1=val1"]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert_that(self.ds.variables['calculated_variable'].units, is_('ppm'))
        assert_that(self.ds.variables['calculated_variable'].att1, is_('val1'))
Beispiel #5
0
    def test_can_specify_units_gridded(self):
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2, escape_colons(valid_echamham_filename)),
                '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2), 'kg m^-3',
                '-o', 'var_out:' + self.OUTPUT_FILENAME, '-a', 'att1=val1,att2=val2']
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert_that(self.ds.variables['var_out'].units, is_('kg m^-3'))
Beispiel #6
0
    def test_can_specify_output_variable(self):
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2, escape_colons(valid_echamham_filename)),
                '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2), 'kg m^-3',
                '-o', 'var_out:' + self.OUTPUT_FILENAME]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert 'var_out' in self.ds.variables
Beispiel #7
0
    def test_can_specify_attributes_gridded(self):
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2, valid_echamham_filename),
                '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2), 'kg m^-3',
                '-o', 'var_out:' + self.OUTPUT_NAME, '-a', 'att1=val1,att2=val2']
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        ds = netCDF4.Dataset(self.GRIDDED_OUTPUT_FILENAME)
        assert_that(ds.variables['var_out'].att1, is_('val1'))
        assert_that(ds.variables['var_out'].att2, is_('val2'))
Beispiel #8
0
    def test_can_specify_units_gridded_no_output_var(self):
        args = [
            'eval',
            "%s:%s" %
            (valid_hadgem_variable, escape_colons(valid_hadgem_filename)),
            "od550aer", "ppm", "-o", self.OUTPUT_FILENAME, "-a", "att1=val1"
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert_that(self.ds.variables['calculated_variable'].units, is_('ppm'))
        assert_that(self.ds.variables['calculated_variable'].att1, is_('val1'))
Beispiel #9
0
    def test_can_specify_output_variable(self):
        args = [
            'eval',
            "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                          escape_colons(valid_echamham_filename)),
            '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2),
            'kg m^-3', '-o', 'var_out:' + self.OUTPUT_FILENAME
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert 'var_out' in self.ds.variables
Beispiel #10
0
    def test_ECHAMHAM_wavelength_sum(self):
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2, escape_colons(valid_echamham_filename)),
                '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2), '1', '-o', self.OUTPUT_FILENAME]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        # Check correct:
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        # A hand calculated selection of values
        expected_result = [0.007633533, 0.007646653, 0.007749859, 0.007744226, 0.007761176]

        assert_that(calculated_result.shape, is_((96, 192)))
        assert numpy.allclose(expected_result, calculated_result[:][0][0:5])
Beispiel #11
0
    def test_can_specify_units_gridded(self):
        args = [
            'eval',
            "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                          escape_colons(valid_echamham_filename)),
            '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2),
            'kg m^-3', '-o', 'var_out:' + self.OUTPUT_FILENAME, '-a',
            'att1=val1,att2=val2'
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        assert_that(self.ds.variables['var_out'].units, is_('kg m^-3'))
Beispiel #12
0
 def test_CloudSat(self):
     args = [
         'eval',
         "%s,%s:%s" % (valid_cloudsat_RVOD_sdata_variable,
                       valid_cloudsat_RVOD_vdata_variable,
                       escape_colons(valid_cloudsat_RVOD_file)),
         '%s/%s' % (valid_cloudsat_RVOD_sdata_variable,
                    valid_cloudsat_RVOD_vdata_variable), 'ppm', '-o',
         'cloudsat_var:' + self.OUTPUT_FILENAME
     ]
     arguments = parse_args(args)
     evaluate_cmd(arguments)
     self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
     assert_that(self.ds.variables['cloudsat_var'].units, is_('ppm'))
Beispiel #13
0
    def test_collocated_NetCDF_Gridded_onto_GASSP(self):
        # First do a collocation of ECHAMHAM onto GASSP
        vars = valid_echamham_variable_1, valid_echamham_variable_2
        filename = escape_colons(valid_echamham_filename)
        sample_file = escape_colons(valid_GASSP_aeroplane_filename)
        sample_var = valid_GASSP_aeroplane_variable
        collocator_and_opts = 'nn[missing_data_for_missing_sample=True],variable=%s' % sample_var
        arguments = ['col', ",".join(vars) + ':' + filename,
                     sample_file + ':collocator=' + collocator_and_opts,
                     '-o', 'collocated_gassp']
        main_arguments = parse_args(arguments)
        col_cmd(main_arguments)

        # Check collocation is the same
        self.ds = netCDF4.Dataset('collocated_gassp.nc')
        col_var1 = self.ds.variables[valid_echamham_variable_1][:]
        col_var2 = self.ds.variables[valid_echamham_variable_2][:]
        # A hand calculated selection of values
        expected_col1 = numpy.ma.masked_invalid(
            [float('Nan'), float('Nan'), float('Nan'), 0.0814601778984, 0.0814601778984])
        compare_masked_arrays(expected_col1, col_var1[:][0:5])
        expected_col2 = numpy.ma.masked_invalid(
            [float('Nan'), float('Nan'), float('Nan'), 0.0741240680218, 0.0741240680218])
        compare_masked_arrays(expected_col2, col_var2[:][0:5])

        # Then do an evaluation using the collocated data:
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                                      'collocated_gassp.nc'),
                "%s=gassp_alias:%s" % (valid_GASSP_aeroplane_variable, escape_colons(valid_GASSP_aeroplane_filename)),
                "(%s + %s) / gassp_alias " % (valid_echamham_variable_1, valid_echamham_variable_2),
                '1', '-o', self.OUTPUT_FILENAME]
        arguments = parse_args(args)
        evaluate_cmd(arguments)
        self.ds.close()

        # Check correct
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        # A hand calculated selection of values
        expected_result = numpy.ma.masked_invalid([0.00196121983491, 0.00197255626472, 0.00120850731992])

        assert_that(calculated_result.shape, is_((311,)))
        # Check the first 3 vald values
        compare_masked_arrays(expected_result, calculated_result[:][10:13])
        os.remove('collocated_gassp.nc')
Beispiel #14
0
    def test_collocated_NetCDF_Gridded_onto_GASSP(self):
        # First do a collocation of ECHAMHAM onto GASSP
        vars = valid_echamham_variable_1, valid_echamham_variable_2
        filename = valid_echamham_filename
        sample_file = valid_GASSP_aeroplane_filename
        sample_var = valid_GASSP_aeroplane_variable
        collocator_and_opts = 'nn,variable=%s' % sample_var
        arguments = ['col', ",".join(vars) + ':' + filename,
                     sample_file + ':collocator=' + collocator_and_opts,
                     '-o', 'collocated_gassp']
        main_arguments = parse_args(arguments)
        col_cmd(main_arguments)

        # Check collocation is the same
        self.ds = netCDF4.Dataset('collocated_gassp.nc')
        col_var1 = self.ds.variables[valid_echamham_variable_1][:]
        col_var2 = self.ds.variables[valid_echamham_variable_2][:]
        # A hand calculated selection of values
        expected_col1 = numpy.ma.masked_invalid(
            [float('Nan'), float('Nan'), float('Nan'), 0.0815568640828, 0.0815568640828])
        compare_masked_arrays(expected_col1, col_var1[:][0:5])
        expected_col2 = numpy.ma.masked_invalid(
            [float('Nan'), float('Nan'), float('Nan'), 0.0605319179595, 0.0605319179595])
        compare_masked_arrays(expected_col2, col_var2[:][0:5])

        # Then do an evaluation using the collocated data:
        args = ['eval', "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                                      'collocated_gassp.nc'),
                "%s=gassp_alias:%s" % (valid_GASSP_aeroplane_variable, valid_GASSP_aeroplane_filename),
                "(%s + %s) / gassp_alias " % (valid_echamham_variable_1, valid_echamham_variable_2),
                '1', '-o', self.OUTPUT_FILENAME]
        arguments = parse_args(args)
        evaluate_cmd(arguments)
        self.ds.close()

        # Check correct
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        # A hand calculated selection of values
        expected_result = numpy.ma.masked_invalid([float('Nan'), float('Nan'), float('Nan'), 0.0004584692, 0.000697334])

        assert_that(calculated_result.shape, is_((311,)))
        compare_masked_arrays(expected_result, calculated_result[:][0:5])
        os.remove('collocated_gassp.nc')
Beispiel #15
0
    def test_Aeronet_wavelength_calculation(self):
        # Example from the CIS Phase 3 Software spec:
        # ... a user should be able to write a plugin to calculate the Aeronet AOD at 550nm from the AOD at 500 nm as
        # AOD550 = AOD500 * (550/500)^(-1*Angstrom500-870)"
        # Takes 3s
        args = ['eval', 'AOT_500,500-870Angstrom=a550to870:' + escape_colons(another_valid_aeronet_filename),
                'AOT_500 * (550.0/500)**(-1*a550to870)', '1', '-o', self.OUTPUT_FILENAME]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        # Check correct:
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        expected_result = [0.2341039087, 0.2285401152, 0.2228799533, 0.1953746746, 0.2094051561, 0.1696889668,
                           0.3137791803, 0.2798929273, 0.1664194279, 0.1254619092, 0.1258309124, 0.1496960031,
                           0.0768447737, 0.0550896430, 0.0534543107, 0.0538315909, 0.0666742975, 0.0512935449,
                           0.0699585189, 0.0645033944]
        assert_that(calculated_result.shape, is_((3140,)))
        assert numpy.allclose(expected_result, calculated_result[0:20])
Beispiel #16
0
    def test_ECHAMHAM_wavelength_sum(self):
        args = [
            'eval',
            "%s,%s:%s" % (valid_echamham_variable_1, valid_echamham_variable_2,
                          escape_colons(valid_echamham_filename)),
            '%s+%s' % (valid_echamham_variable_1, valid_echamham_variable_2),
            '1', '-o', self.OUTPUT_FILENAME
        ]
        arguments = parse_args(args)
        evaluate_cmd(arguments)

        # Check correct:
        self.ds = netCDF4.Dataset(self.OUTPUT_FILENAME)
        calculated_result = self.ds.variables['calculated_variable'][:]
        # A hand calculated selection of values
        expected_result = [
            0.007633533, 0.007646653, 0.007749859, 0.007744226, 0.007761176
        ]

        assert_that(calculated_result.shape, is_((96, 192)))
        assert numpy.allclose(expected_result, calculated_result[:][0][0:5])