Beispiel #1
0
class StaticFilesTest(TestCase):
    good_mp3_path = 'mp3/2014/06/09/ander_v._leo.mp3'
    good_txt_path = 'txt/2015/12/28/opinion_text.txt'
    good_pdf_path = 'pdf/2013/06/12/' + \
                    'in_re_motion_for_consent_to_disclosure_of_court_records.pdf'

    def setUp(self):
        self.court = Court.objects.get(pk='test')
        self.docket = Docket(case_name=u'Docket',
                             court=self.court,
                             source=Docket.DEFAULT)
        self.docket.save()

        self.audio = Audio(local_path_original_file=self.good_mp3_path,
                           local_path_mp3=self.good_mp3_path,
                           docket=self.docket,
                           blocked=False,
                           case_name_full='Ander v. Leo',
                           date_created=datetime.date(2014, 6, 9))
        self.audio.save(index=False)

        self.opinioncluster = OpinionCluster(
            case_name=u'Hotline Bling',
            docket=self.docket,
            date_filed=datetime.date(2015, 12, 14),
        )
        self.opinioncluster.save(index=False)

        self.txtopinion = Opinion(cluster=self.opinioncluster,
                                  type='Lead Opinion',
                                  local_path=self.good_txt_path)
        self.txtopinion.save(index=False)

        self.pdfopinion = Opinion(cluster=self.opinioncluster,
                                  type='Lead Opinion',
                                  local_path=self.good_pdf_path)
        self.pdfopinion.save(index=False)

    def test_serve_static_file_serves_mp3(self):
        request = HttpRequest()
        file_path = self.audio.local_path_mp3
        response = serve_static_file(request, file_path=self.good_mp3_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'audio/mpeg')
        self.assertIn('inline;', response['Content-Disposition'])

    def test_serve_static_file_serves_txt(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_txt_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'text/plain')
        self.assertIn('inline;', response['Content-Disposition'])
        self.assertIn('FOR THE DISTRICT OF COLUMBIA CIRCUIT', response.content)

    def test_serve_static_file_serves_pdf(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_pdf_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'application/pdf')
        self.assertIn('inline;', response['Content-Disposition'])
    def add_oc_and_o(self, old_document, old_citation, old_docket, new_docket):
        """Add the OpinionCluster and Opinion, updating existing items if
        present.
        """
        new_opinion_cluster = OpinionClusterNew(
            pk=old_document.pk,
            docket=new_docket,
            judges=self._none_to_blank(old_document.judges),
            date_modified=old_document.date_modified,
            date_created=old_document.date_modified,
            date_filed=old_document.date_filed,
            slug=self._none_to_blank(old_citation.slug),
            citation_id=old_document.citation_id,
            case_name_short=old_docket.case_name_short,
            case_name=old_docket.case_name,
            case_name_full=old_docket.case_name_full,
            federal_cite_one=self._none_to_blank(old_citation.federal_cite_one),
            federal_cite_two=self._none_to_blank(old_citation.federal_cite_two),
            federal_cite_three=self._none_to_blank(old_citation.federal_cite_three),
            state_cite_one=self._none_to_blank(old_citation.state_cite_one),
            state_cite_two=self._none_to_blank(old_citation.state_cite_two),
            state_cite_three=self._none_to_blank(old_citation.state_cite_three),
            state_cite_regional=self._none_to_blank(old_citation.state_cite_regional),
            specialty_cite_one=self._none_to_blank(old_citation.specialty_cite_one),
            scotus_early_cite=self._none_to_blank(old_citation.scotus_early_cite),
            lexis_cite=self._none_to_blank(old_citation.lexis_cite),
            westlaw_cite=self._none_to_blank(old_citation.westlaw_cite),
            neutral_cite=self._none_to_blank(old_citation.neutral_cite),
            scdb_id=self._none_to_blank(old_document.supreme_court_db_id),
            source=old_document.source,
            nature_of_suit=old_document.nature_of_suit,
            citation_count=old_document.citation_count,
            precedential_status=old_document.precedential_status,
            date_blocked=old_document.date_blocked,
            blocked=old_document.blocked,
        )
        new_opinion_cluster.save(
            using='default',
            index=False,
        )

        new_opinion = OpinionNew(
            pk=old_document.pk,
            cluster=new_opinion_cluster,
            date_modified=old_document.date_modified,
            date_created=old_document.time_retrieved,
            type='010combined',
            sha1=old_document.sha1,
            download_url=old_document.download_url,
            local_path=old_document.local_path,
            plain_text=old_document.plain_text,
            html=self._none_to_blank(old_document.html),
            html_lawbox=self._none_to_blank(old_document.html_lawbox),
            html_with_citations=old_document.html_with_citations,
            extracted_by_ocr=old_document.extracted_by_ocr,
        )
        new_opinion.save(
            using='default',
            index=False,
        )
Beispiel #3
0
class BulkDataTest(TestCase):
    fixtures = ['court_data.json']
    tmp_data_dir = '/tmp/bulk-dir/'

    def setUp(self):
        docket = Docket(
            case_name=u'foo',
            court=Court.objects.get(pk='test'),
            source=Docket.DEFAULT
        )
        docket.save()
        # Must be more than a year old for all tests to be runnable.
        last_month = now().date() - timedelta(days=400)
        self.doc_cluster = OpinionCluster(
            case_name=u"foo",
            docket=docket,
            date_filed=last_month
        )
        self.doc_cluster.save(index=False)
        opinion = Opinion.objects.create(
            cluster=self.doc_cluster,
            type='Lead Opinion'
        )
        opinion2 = Opinion.objects.create(
            cluster=self.doc_cluster,
            type='Concurrence'
        )
        OpinionsCited.objects.create(
            citing_opinion=opinion2,
            cited_opinion=opinion
        )

        # Scrape the audio "site" and add its contents
        site = test_oral_arg_scraper.Site().parse()
        OralArgumentCommand().scrape_court(site, full_crawl=True)

    def tearDown(self):
        OpinionCluster.objects.all().delete()
        Docket.objects.all().delete()
        Audio.objects.all().delete()
        try:
            shutil.rmtree(self.tmp_data_dir)
        except OSError:
            pass

    @override_settings(BULK_DATA_DIR=tmp_data_dir)
    def test_make_all_bulk_files(self):
        """Can we successfully generate all bulk files?"""
        Command().execute()

    def test_database_has_objects_for_bulk_export(self):
        self.assertTrue(Opinion.objects.count() > 0, 'Opinions exist')
        self.assertTrue(Audio.objects.count() > 0, 'Audio exist')
        self.assertTrue(Docket.objects.count() > 0, 'Docket exist')
        self.assertTrue(Court.objects.count() > 0, 'Court exist')
        self.assertEqual(
            Court.objects.get(pk='test').full_name,
            'Testing Supreme Court'
        )
Beispiel #4
0
class BulkDataTest(TestCase):
    tmp_data_dir = "/tmp/bulk-dir/"

    def setUp(self) -> None:
        docket = Docket(
            case_name="foo",
            court=Court.objects.get(pk="test"),
            source=Docket.DEFAULT,
        )
        docket.save()
        # Must be more than a year old for all tests to be runnable.
        last_month = now().date() - timedelta(days=400)
        self.doc_cluster = OpinionCluster(case_name="foo",
                                          docket=docket,
                                          date_filed=last_month)
        self.doc_cluster.save(index=False)
        opinion = Opinion(cluster=self.doc_cluster, type="Lead Opinion")
        opinion.save(index=False)

        opinion2 = Opinion(cluster=self.doc_cluster, type="Concurrence")
        opinion2.save(index=False)

        OpinionsCited.objects.create(citing_opinion=opinion2,
                                     cited_opinion=opinion)

        # Scrape the audio "site" and add its contents
        site = test_oral_arg_scraper.Site().parse()
        with mock.patch(
                "cl.lib.storage.get_name_by_incrementing",
                side_effect=clobbering_get_name,
        ):
            OralArgumentCommand().scrape_court(site, full_crawl=True)

    def tearDown(self) -> None:
        OpinionCluster.objects.all().delete()
        Docket.objects.all().delete()
        Audio.objects.all().delete()
        try:
            shutil.rmtree(self.tmp_data_dir)
        except OSError:
            pass

    @override_settings(BULK_DATA_DIR=tmp_data_dir)
    def test_make_all_bulk_files(self) -> None:
        """Can we successfully generate all bulk files?"""
        call_command("cl_make_bulk_data")

    def test_database_has_objects_for_bulk_export(self) -> None:
        # This is a very weird test. It's essentially just testing the
        # setUp function, which...OK?
        self.assertTrue(Opinion.objects.count() > 0, "No opinions exist")
        self.assertTrue(OpinionsCited.objects.count() > 0,
                        "No citations exist")
        self.assertTrue(Audio.objects.count() > 0, "No audio exist")
        self.assertTrue(Docket.objects.count() > 0, "No docket exist")
        self.assertTrue(Court.objects.count() > 0, "No courts exist")
        self.assertEqual(
            Court.objects.get(pk="test").full_name, "Testing Supreme Court")
Beispiel #5
0
class BulkDataTest(TestCase):
    tmp_data_dir = '/tmp/bulk-dir/'

    def setUp(self):
        docket = Docket(
            case_name=u'foo',
            court=Court.objects.get(pk='test'),
            source=Docket.DEFAULT
        )
        docket.save()
        # Must be more than a year old for all tests to be runnable.
        last_month = now().date() - timedelta(days=400)
        self.doc_cluster = OpinionCluster(
            case_name=u"foo",
            docket=docket,
            date_filed=last_month
        )
        self.doc_cluster.save(index=False)
        opinion = Opinion(cluster=self.doc_cluster, type='Lead Opinion')
        opinion.save(index=False)

        opinion2 = Opinion(cluster=self.doc_cluster, type='Concurrence')
        opinion2.save(index=False)

        OpinionsCited.objects.create(
            citing_opinion=opinion2,
            cited_opinion=opinion
        )

        # Scrape the audio "site" and add its contents
        site = test_oral_arg_scraper.Site().parse()
        OralArgumentCommand().scrape_court(site, full_crawl=True)

    def tearDown(self):
        OpinionCluster.objects.all().delete()
        Docket.objects.all().delete()
        Audio.objects.all().delete()
        try:
            shutil.rmtree(self.tmp_data_dir)
        except OSError:
            pass

    @override_settings(BULK_DATA_DIR=tmp_data_dir)
    def test_make_all_bulk_files(self):
        """Can we successfully generate all bulk files?"""
        Command().execute()

    def test_database_has_objects_for_bulk_export(self):
        self.assertTrue(Opinion.objects.count() > 0, 'Opinions exist')
        self.assertTrue(Audio.objects.count() > 0, 'Audio exist')
        self.assertTrue(Docket.objects.count() > 0, 'Docket exist')
        self.assertTrue(Court.objects.count() > 0, 'Court exist')
        self.assertEqual(
            Court.objects.get(pk='test').full_name,
            'Testing Supreme Court'
        )
Beispiel #6
0
    def test_save_old_opinion(self):
        """Can we save opinions older than 1900?"""
        docket = Docket(case_name=u"Blah", court_id='test',
                        source=Docket.DEFAULT)
        docket.save()
        oc = OpinionCluster(
            case_name=u"Blah",
            docket=docket,
            date_filed=datetime.date(1899, 1, 1),
        )
        oc.save()
        o = Opinion(cluster=oc, type='Lead Opinion')

        try:
            cf = ContentFile(StringIO.StringIO('blah').read())
            o.file_with_date = datetime.date(1899, 1, 1)
            o.local_path.save('file_name.pdf', cf, save=False)
            o.save(index=False)
        except ValueError as e:
            raise ValueError("Unable to save a case older than 1900. Did you "
                             "try to use `strftime`...again?")
    def migrate_opinions_oral_args_and_dockets(self):
        self.stdout.write("Migrating dockets, audio files, and opinions to new "
                          "database...")
        q = DocketOld.objects.using('old').all()
        old_dockets = queryset_generator(q)
        num_dockets = q.count()

        progress = 0
        self._print_progress(progress, num_dockets)
        for old_docket in old_dockets:
            # First do the docket, then create the cluster and opinion objects.
            try:
                old_audio = old_docket.audio_files.all()[0]
            except IndexError:
                old_audio = None
            try:
                old_document = old_docket.documents.all()[0]
            except IndexError:
                old_document = None
            if old_document is not None:
                old_citation = old_document.citation
                old_doc_case_name, old_doc_case_name_full, old_doc_case_name_short = self._get_case_names(old_citation.case_name)
            if old_audio is not None:
                old_audio_case_name, old_audio_case_name_full, old_audio_case_name_short = self._get_case_names(old_audio.case_name)

            court = CourtNew.objects.get(pk=old_docket.court_id)  # Courts are in place thanks to initial data.

            new_docket = DocketNew(
                pk=old_docket.pk,
                date_modified=old_docket.date_modified,
                date_created=old_docket.date_modified,
                court=court,
                case_name=old_doc_case_name,
                case_name_full=old_doc_case_name_full,
                case_name_short=old_doc_case_name_short,
                slug=self._none_to_blank(old_docket.slug),
                docket_number=self._none_to_blank(old_citation.docket_number),
                date_blocked=old_docket.date_blocked,
                blocked=old_docket.blocked,
            )
            if old_audio is not None:
                new_docket.date_argued = old_audio.date_argued
            new_docket.save(using='default')

            if old_document is not None:
                new_opinion_cluster = OpinionClusterNew(
                    pk=old_document.pk,
                    docket=new_docket,
                    judges=self._none_to_blank(old_document.judges),
                    date_modified=old_document.date_modified,
                    date_created=old_document.date_modified,
                    date_filed=old_document.date_filed,
                    slug=self._none_to_blank(old_citation.slug),
                    citation_id=old_document.citation_id,
                    case_name_short=old_doc_case_name_short,
                    case_name=old_doc_case_name,
                    case_name_full=old_doc_case_name_full,
                    federal_cite_one=self._none_to_blank(
                        old_citation.federal_cite_one),
                    federal_cite_two=self._none_to_blank(
                        old_citation.federal_cite_two),
                    federal_cite_three=self._none_to_blank(
                        old_citation.federal_cite_three),
                    state_cite_one=self._none_to_blank(
                        old_citation.state_cite_one),
                    state_cite_two=self._none_to_blank(
                        old_citation.state_cite_two),
                    state_cite_three=self._none_to_blank(
                        old_citation.state_cite_three),
                    state_cite_regional=self._none_to_blank(
                        old_citation.state_cite_regional),
                    specialty_cite_one=self._none_to_blank(
                        old_citation.specialty_cite_one),
                    scotus_early_cite=self._none_to_blank(
                        old_citation.scotus_early_cite),
                    lexis_cite=self._none_to_blank(old_citation.lexis_cite),
                    westlaw_cite=self._none_to_blank(old_citation.westlaw_cite),
                    neutral_cite=self._none_to_blank(old_citation.neutral_cite),
                    scdb_id=self._none_to_blank(
                        old_document.supreme_court_db_id),
                    source=old_document.source,
                    nature_of_suit=old_document.nature_of_suit,
                    citation_count=old_document.citation_count,
                    precedential_status=old_document.precedential_status,
                    date_blocked=old_document.date_blocked,
                    blocked=old_document.blocked,
                )
                new_opinion_cluster.save(
                    using='default',
                    index=False,
                )

                new_opinion = OpinionNew(
                    pk=old_document.pk,
                    cluster=new_opinion_cluster,
                    date_modified=old_document.date_modified,
                    date_created=old_document.time_retrieved,
                    type='010combined',
                    sha1=old_document.sha1,
                    download_url=old_document.download_url,
                    local_path=old_document.local_path,
                    plain_text=old_document.plain_text,
                    html=self._none_to_blank(old_document.html),
                    html_lawbox=self._none_to_blank(old_document.html_lawbox),
                    html_with_citations=old_document.html_with_citations,
                    extracted_by_ocr=old_document.extracted_by_ocr,
                )
                new_opinion.save(
                    using='default',
                    index=False,
                )

            if old_audio is not None:
                new_audio_file = AudioNew(
                    pk=old_audio.pk,
                    docket=new_docket,
                    source=old_audio.source,
                    case_name=old_audio_case_name,
                    case_name_short=old_audio_case_name_short,
                    case_name_full=old_audio_case_name_full,
                    judges=self._none_to_blank(old_audio.judges),
                    date_created=old_audio.time_retrieved,
                    date_modified=old_audio.date_modified,
                    sha1=old_audio.sha1,
                    download_url=old_audio.download_url,
                    local_path_mp3=old_audio.local_path_mp3,
                    local_path_original_file=old_audio.local_path_original_file,
                    duration=old_audio.duration,
                    processing_complete=old_audio.processing_complete,
                    date_blocked=old_audio.date_blocked,
                    blocked=old_audio.blocked,
                )
                new_audio_file.save(
                    using='default',
                    index=False,
                )

            progress += 1
            self._print_progress(progress, num_dockets)
        self.stdout.write(u'')  # Newline
def add_new_records(
    html_str: str,
    data: Dict[str, Any],
    date_argued: datetime.date,
    date_filed: datetime.date,
    case_names: Dict[str, str],
    status: str,
    docket_number: str,
    found_citations: List[FoundCitation],
    court_id: str,
) -> Docket:
    """Create new records in the DB based on parsed data

    :param html_str: HTML opinion to add
    :param data: Case data to import
    :param date_argued: Date case was argued.
    :param date_filed: Date case was filed.
    :param case_names: A dict with the three case name types
    :param status: Whether it's precedential
    :param docket_number: The docket number
    :param found_citations: A list of FoundCitation objects.
    :param court_id: The CL id of the court
    :return: None.
    """
    docket = Docket.objects.create(
        **case_names,
        docket_number=docket_number,
        court_id=court_id,
        source=Docket.ANON_2020,
        ia_needs_upload=False,
        date_argued=date_argued,
    )

    logger.info("Add cluster for: %s", found_citations[0].base_citation())
    judges = data["judges"] or ""
    cluster = OpinionCluster(
        **case_names,
        precedential_status=status,
        docket_id=docket.id,
        source=docket.ANON_2020,
        date_filed=date_filed,
        attorneys=data["representation"] or "",
        disposition=data["summary_disposition"] or "",
        summary=data["summary_court"] or "",
        history=data["history"] or "",
        cross_reference=data["history_docket_numbers"] or "",
        correction=data["publication_status_note"] or "",
        judges=judges.replace("{", "").replace("}", "") or "",
    )
    cluster.save(index=False)

    for citation in found_citations:
        logger.info("Adding citation for: %s", citation.base_citation())
        Citation.objects.get_or_create(
            volume=citation.volume,
            reporter=citation.reporter,
            page=citation.page,
            type=map_reporter_db_cite_type(
                REPORTERS[citation.canonical_reporter][0]["cite_type"]),
            cluster_id=cluster.id,
        )

    op = Opinion(
        cluster_id=cluster.id,
        type=Opinion.COMBINED,
        html_anon_2020=html_str,
        extracted_by_ocr=False,
    )
    op.save()
    logger.info(
        f"Finished importing cluster {cluster.id}; {found_citations[0].base_citation()}"
    )
    return docket
def make_and_save(item,
                  skipdupes=False,
                  min_dates=None,
                  start_dates=None,
                  testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = (date_argued) = (
        date_reargued
    ) = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item["dates"]:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued
                 or date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied
                  or date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item["file"])

    # special rule for Kentucky
    if item["court_id"] == "kycourtapp" and main_date <= date(1975, 12, 31):
        item["court_id"] = "kycourtapphigh"

    if min_dates is not None:
        if min_dates.get(item["court_id"]) is not None:
            if main_date >= min_dates[item["court_id"]]:
                print(
                    main_date,
                    "after",
                    min_dates[item["court_id"]],
                    " -- skipping.",
                )
                return
    if start_dates is not None:
        if start_dates.get(item["court_id"]) is not None:
            if main_date <= start_dates[item["court_id"]]:
                print(
                    main_date,
                    "before court founding:",
                    start_dates[item["court_id"]],
                    " -- skipping.",
                )
                return

    docket = Docket(
        source=Docket.COLUMBIA,
        date_argued=date_argued,
        date_reargued=date_reargued,
        date_cert_granted=date_cert_granted,
        date_cert_denied=date_cert_denied,
        date_reargument_denied=date_reargument_denied,
        court_id=item["court_id"],
        case_name_short=item["case_name_short"] or "",
        case_name=item["case_name"] or "",
        case_name_full=item["case_name_full"] or "",
        docket_number=item["docket"] or "",
    )

    # get citation objects in a list for addition to the cluster
    found_citations = []
    for c in item["citations"]:
        found = get_citations(clean_text(c, ["html", "inline_whitespace"]))
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item["docket"]:
                docket_no = item["docket"].lower()
                if "claim no." in docket_no:
                    docket_no = docket_no.split("claim no.")[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, "")
                docket_no = docket_no.strip(".").strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for
            # months and a few trivial words) in the citation,
            # then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, "")
            num_letters = sum(
                non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate
            # a bad citation, then it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." %
                            (c, item["court_id"], item["docket"]))
        else:
            found_citations.extend(found.to_model())

    cluster = OpinionCluster(
        judges=item.get("judges", "") or "",
        precedential_status=("Unpublished"
                             if item["unpublished"] else "Published"),
        date_filed=main_date,
        case_name_short=item["case_name_short"] or "",
        case_name=item["case_name"] or "",
        case_name_full=item["case_name_full"] or "",
        source="Z",
        attorneys=item["attorneys"] or "",
        posture=item["posture"] or "",
    )
    panel = lookup_judges_by_last_name_list(item["panel"], item["court_id"],
                                            panel_date)

    opinions = []
    for i, opinion_info in enumerate(item["opinions"]):
        if opinion_info["author"] is None:
            author = None
        else:
            author = lookup_judge_by_last_name(opinion_info["author"],
                                               item["court_id"], panel_date)

        converted_text = convert_columbia_html(opinion_info["opinion"])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info["type"]]
        if opinion_type == Opinion.LEAD and i > 0:
            opinion_type = Opinion.ADDENDUM

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info["per_curiam"],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info["sha1"],
            # This is surely not updated for the new S3 world. If you're
            # reading this, you'll need to update this code.
            local_path=opinion_info["local_path"],
        )
        joined_by = lookup_judges_by_last_name_list(item["joining"],
                                                    item["court_id"],
                                                    panel_date)
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster)
        if dups:
            if skipdupes:
                print("Duplicate. skipping.")
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for citation in found_citations:
                citation.cluster = cluster
                citation.save()
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" %
                  (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise
def parse_harvard_opinions(reporter, volume, make_searchable):
    """
    Parse downloaded CaseLaw Corpus from internet archive and add them to our
    database.

    Optionally uses a reporter abbreviation to identify cases to download as
    used by IA.  (Ex. T.C. => tc)

    Optionally uses a volume integer.

    If neither is provided, code will cycle through all downloaded files.

    :param volume: The volume (int) of the reporters (optional) (ex 10)
    :param reporter: Reporter string as slugify'd (optional) (tc) for T.C.
    :param make_searchable: Boolean to indicate saving to solr
    :return: None
    """
    if not reporter and volume:
        logger.error("You provided a volume but no reporter. Exiting.")
        return

    for file_path in filepath_list(reporter, volume):
        ia_download_url = "/".join(
            ["https://archive.org/download", file_path.split("/", 9)[-1]]
        )

        if OpinionCluster.objects.filter(
            filepath_json_harvard=file_path
        ).exists():
            logger.info("Skipping - already in system %s" % ia_download_url)
            continue

        try:
            with open(file_path) as f:
                data = json.load(f)
        except ValueError:
            logger.warning("Empty json: missing case at: %s" % ia_download_url)
            continue
        except Exception as e:
            logger.warning("Unknown error %s for: %s" % (e, ia_download_url))
            continue

        cites = get_citations(data["citations"][0]["cite"])
        if not cites:
            logger.info(
                "No citation found for %s." % data["citations"][0]["cite"]
            )
            continue

        case_name = harmonize(data["name_abbreviation"])
        case_name_short = cnt.make_case_name_short(case_name)
        case_name_full = harmonize(data["name"])

        citation = cites[0]
        if skip_processing(citation, case_name, file_path):
            continue

        # TODO: Generalize this to handle all court types somehow.
        court_id = match_court_string(
            data["court"]["name"],
            state=True,
            federal_appeals=True,
            federal_district=True,
        )

        soup = BeautifulSoup(data["casebody"]["data"], "lxml")

        # Some documents contain images in the HTML
        # Flag them for a later crawl by using the placeholder '[[Image]]'
        judge_list = [
            extract_judge_last_name(x.text) for x in soup.find_all("judges")
        ]
        author_list = [
            extract_judge_last_name(x.text) for x in soup.find_all("author")
        ]
        # Flatten and dedupe list of judges
        judges = ", ".join(
            sorted(
                list(
                    set(
                        itertools.chain.from_iterable(judge_list + author_list)
                    )
                )
            )
        )
        judges = titlecase(judges)
        docket_string = (
            data["docket_number"]
            .replace("Docket No.", "")
            .replace("Docket Nos.", "")
            .strip()
        )

        short_fields = ["attorneys", "disposition", "otherdate", "seealso"]

        long_fields = [
            "syllabus",
            "summary",
            "history",
            "headnotes",
            "correction",
        ]

        short_data = parse_extra_fields(soup, short_fields, False)
        long_data = parse_extra_fields(soup, long_fields, True)

        with transaction.atomic():
            logger.info("Adding docket for: %s", citation.base_citation())
            docket = Docket(
                case_name=case_name,
                case_name_short=case_name_short,
                case_name_full=case_name_full,
                docket_number=docket_string,
                court_id=court_id,
                source=Docket.HARVARD,
                ia_needs_upload=False,
            )
            try:
                with transaction.atomic():
                    docket.save()
            except OperationalError as e:
                if "exceeds maximum" in str(e):
                    docket.docket_number = (
                        "%s, See Corrections for full Docket Number"
                        % trunc(docket_string, length=5000, ellipsis="...")
                    )
                    docket.save()
                    long_data["correction"] = "%s <br> %s" % (
                        data["docket_number"],
                        long_data["correction"],
                    )
            # Handle partial dates by adding -01v to YYYY-MM dates
            date_filed, is_approximate = validate_dt(data["decision_date"])

            logger.info("Adding cluster for: %s", citation.base_citation())
            cluster = OpinionCluster(
                case_name=case_name,
                case_name_short=case_name_short,
                case_name_full=case_name_full,
                precedential_status="Published",
                docket_id=docket.id,
                source="U",
                date_filed=date_filed,
                date_filed_is_approximate=is_approximate,
                attorneys=short_data["attorneys"],
                disposition=short_data["disposition"],
                syllabus=long_data["syllabus"],
                summary=long_data["summary"],
                history=long_data["history"],
                other_dates=short_data["otherdate"],
                cross_reference=short_data["seealso"],
                headnotes=long_data["headnotes"],
                correction=long_data["correction"],
                judges=judges,
                filepath_json_harvard=file_path,
            )
            cluster.save(index=False)

            logger.info("Adding citation for: %s", citation.base_citation())
            Citation.objects.create(
                volume=citation.volume,
                reporter=citation.reporter,
                page=citation.page,
                type=map_reporter_db_cite_type(
                    REPORTERS[citation.canonical_reporter][0]["cite_type"]
                ),
                cluster_id=cluster.id,
            )
            new_op_pks = []
            for op in soup.find_all("opinion"):
                # This code cleans author tags for processing.
                # It is particularly useful for identifiying Per Curiam
                for elem in [op.find("author")]:
                    if elem is not None:
                        [x.extract() for x in elem.find_all("page-number")]

                auth = op.find("author")
                if auth is not None:
                    author_tag_str = titlecase(auth.text.strip(":"))
                    author_str = titlecase(
                        "".join(extract_judge_last_name(author_tag_str))
                    )
                else:
                    author_str = ""
                    author_tag_str = ""

                per_curiam = True if author_tag_str == "Per Curiam" else False
                # If Per Curiam is True set author string to Per Curiam
                if per_curiam:
                    author_str = "Per Curiam"

                op_type = map_opinion_type(op.get("type"))
                opinion_xml = str(op)
                logger.info("Adding opinion for: %s", citation.base_citation())
                op = Opinion(
                    cluster_id=cluster.id,
                    type=op_type,
                    author_str=author_str,
                    xml_harvard=opinion_xml,
                    per_curiam=per_curiam,
                    extracted_by_ocr=True,
                )
                # Don't index now; do so later if desired
                op.save(index=False)
                new_op_pks.append(op.pk)

        if make_searchable:
            add_items_to_solr.delay(new_op_pks, "search.Opinion")

        logger.info("Finished: %s", citation.base_citation())
def make_and_save(item, skipdupes=False, min_dates=None, testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued or
                 date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied or
                  date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item['file'])

    if min_dates is not None:
        if min_dates.get(item['court_id']) is not None:
            if main_date >= min_dates[item['court_id']]:
                print(main_date, 'after', min_dates[item['court_id']],
                      ' -- skipping.')
                return

    docket = Docket(
        source=Docket.COLUMBIA,
        date_argued=date_argued,
        date_reargued=date_reargued,
        date_cert_granted=date_cert_granted,
        date_cert_denied=date_cert_denied,
        date_reargument_denied=date_reargument_denied,
        court_id=item['court_id'],
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        docket_number=item['docket'] or ''
    )

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item['docket']:
                docket_no = item['docket'].lower()
                if 'claim no.' in docket_no:
                    docket_no = docket_no.split('claim no.')[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, '')
                docket_no = docket_no.strip('.').strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for months and a few
            # trivial words) in the citation, then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, '')
            num_letters = sum(non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate a bad citation, then
            # it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." % (
                                c, item['court_id'], item['docket']
                            ))
        else:
            found_citations.extend(found)
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        judges=item.get('judges', '') or "",
        precedential_status=('Unpublished' if item['unpublished'] else 'Published'),
        date_filed=main_date,
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        source='Z',
        attorneys=item['attorneys'] or '',
        posture=item['posture'] or '',
        **citations_map
    )
    panel = [find_person(n, item['court_id'], case_date=panel_date) for n in
             item['panel']]
    panel = [x for x in panel if x is not None]

    opinions = []
    for i, opinion_info in enumerate(item['opinions']):
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'], item['court_id'],
                                 case_date=panel_date)
        converted_text = convert_columbia_html(opinion_info['opinion'])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info['type']]
        if opinion_type == '020lead' and i > 0:
            opinion_type = '050addendum'

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info['per_curiam'],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info['sha1'],
            local_path=opinion_info['local_path'],
        )
        joined_by = [find_person(n, item['court_id'], case_date=panel_date) for n in opinion_info['joining']]
        joined_by = [x for x in joined_by if x is not None]
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster, panel, opinions)
        if dups:
            if skipdupes:
                print('Duplicate. skipping.')
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" % (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise
def make_and_save(item):
    """Associates case data from `parse_opinions` with objects. Saves these objects."""
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                print("Found unknown date tag '%s' with date '%s'." % date_info)

    docket = Docket(
        date_argued=date_argued
        ,date_reargued=date_reargued
        ,date_cert_granted=date_cert_granted
        ,date_cert_denied=date_cert_denied
        ,date_reargument_denied=date_reargument_denied
        ,court_id=item['court_id']
        ,case_name_short=item['case_name_short'] or ''
        ,case_name=item['case_name'] or ''
        ,case_name_full=item['case_name_full'] or ''
        ,docket_number=item['docket'] or ''
    )
    docket.save()

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            raise Exception("Failed to get a citation from the string '%s'." % c)
        elif len(found) > 1:
            raise Exception("Got multiple citations from string '%s' when there should have been one." % c)
        found_citations.append(found[0])
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        docket=docket
        ,precedential_status=('Unpublished' if item['unpublished'] else 'Published')
        ,date_filed=date_filed
        ,case_name_short=item['case_name_short'] or ''
        ,case_name=item['case_name'] or ''
        ,case_name_full=item['case_name_full'] or ''
        ,source='Z'
        ,attorneys=item['attorneys'] or ''
        ,posture=item['posture'] or ''
        ,**citations_map
    )
    cluster.save()
    
    if date_argued is not None:
        paneldate = date_argued
    else:
        paneldate = date_filed
    panel = [find_person(n, item['court_id'], paneldate) for n in item['panel']]
    panel = [x for x in panel if x is not None]
    for member in panel:
        cluster.panel.add(member)

    for opinion_info in item['opinions']:
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'], item['court_id'], date_filed or date_argued)
        opinion = Opinion(
            cluster=cluster
            ,author=author
            ,type=OPINION_TYPE_MAPPING[opinion_info['type']]
            ,html_columbia=opinion_info['opinion']
        )
        opinion.save()
        joined_by = [find_person(n, item['court_id'], paneldate) for n in opinion_info['joining']]
        joined_by = [x for x in joined_by if x is not None]
        for joiner in joined_by:
            opinion.joined_by.add(joiner)
Beispiel #13
0
class StaticFilesTest(TestCase):
    good_mp3_path = "mp3/2014/06/09/ander_v._leo.mp3"
    good_txt_path = "txt/2015/12/28/opinion_text.txt"
    good_pdf_path = (
        "pdf/2013/06/12/" +
        "in_re_motion_for_consent_to_disclosure_of_court_records.pdf")

    def setUp(self):
        self.court = Court.objects.get(pk="test")
        self.docket = Docket(case_name=u"Docket",
                             court=self.court,
                             source=Docket.DEFAULT)
        self.docket.save()

        self.audio = Audio(
            local_path_original_file=self.good_mp3_path,
            local_path_mp3=self.good_mp3_path,
            docket=self.docket,
            blocked=False,
            case_name_full="Ander v. Leo",
            date_created=datetime.date(2014, 6, 9),
        )
        self.audio.save(index=False)

        self.opinioncluster = OpinionCluster(
            case_name=u"Hotline Bling",
            docket=self.docket,
            date_filed=datetime.date(2015, 12, 14),
        )
        self.opinioncluster.save(index=False)

        self.txtopinion = Opinion(
            cluster=self.opinioncluster,
            type="Lead Opinion",
            local_path=self.good_txt_path,
        )
        self.txtopinion.save(index=False)

        self.pdfopinion = Opinion(
            cluster=self.opinioncluster,
            type="Lead Opinion",
            local_path=self.good_pdf_path,
        )
        self.pdfopinion.save(index=False)

    def test_serve_static_file_serves_mp3(self):
        request = HttpRequest()
        file_path = self.audio.local_path_mp3
        response = serve_static_file(request, file_path=self.good_mp3_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response["Content-Type"], "audio/mpeg")
        self.assertIn("inline;", response["Content-Disposition"])

    def test_serve_static_file_serves_txt(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_txt_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response["Content-Type"], "text/plain")
        self.assertIn("inline;", response["Content-Disposition"])
        self.assertIn("FOR THE DISTRICT OF COLUMBIA CIRCUIT", response.content)

    def test_serve_static_file_serves_pdf(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_pdf_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response["Content-Type"], "application/pdf")
        self.assertIn("inline;", response["Content-Disposition"])
Beispiel #14
0
    def add_oc_and_o(self, old_document, old_citation, old_docket, new_docket):
        """Add the OpinionCluster and Opinion, updating existing items if
        present.
        """
        new_opinion_cluster = OpinionClusterNew(
            pk=old_document.pk,
            docket=new_docket,
            judges=self._none_to_blank(old_document.judges),
            date_modified=old_document.date_modified,
            date_created=old_document.date_modified,
            date_filed=old_document.date_filed,
            slug=self._none_to_blank(old_citation.slug),
            citation_id=old_document.citation_id,
            case_name_short=old_docket.case_name_short,
            case_name=old_docket.case_name,
            case_name_full=old_docket.case_name_full,
            federal_cite_one=self._none_to_blank(
                old_citation.federal_cite_one),
            federal_cite_two=self._none_to_blank(
                old_citation.federal_cite_two),
            federal_cite_three=self._none_to_blank(
                old_citation.federal_cite_three),
            state_cite_one=self._none_to_blank(old_citation.state_cite_one),
            state_cite_two=self._none_to_blank(old_citation.state_cite_two),
            state_cite_three=self._none_to_blank(
                old_citation.state_cite_three),
            state_cite_regional=self._none_to_blank(
                old_citation.state_cite_regional),
            specialty_cite_one=self._none_to_blank(
                old_citation.specialty_cite_one),
            scotus_early_cite=self._none_to_blank(
                old_citation.scotus_early_cite),
            lexis_cite=self._none_to_blank(old_citation.lexis_cite),
            westlaw_cite=self._none_to_blank(old_citation.westlaw_cite),
            neutral_cite=self._none_to_blank(old_citation.neutral_cite),
            scdb_id=self._none_to_blank(old_document.supreme_court_db_id),
            source=old_document.source,
            nature_of_suit=old_document.nature_of_suit,
            citation_count=old_document.citation_count,
            precedential_status=old_document.precedential_status,
            date_blocked=old_document.date_blocked,
            blocked=old_document.blocked,
        )
        new_opinion_cluster.save(
            using='default',
            index=False,
        )

        new_opinion = OpinionNew(
            pk=old_document.pk,
            cluster=new_opinion_cluster,
            date_modified=old_document.date_modified,
            date_created=old_document.time_retrieved,
            type='010combined',
            sha1=old_document.sha1,
            download_url=old_document.download_url,
            local_path=old_document.local_path,
            plain_text=old_document.plain_text,
            html=self._none_to_blank(old_document.html),
            html_lawbox=self._none_to_blank(old_document.html_lawbox),
            html_with_citations=old_document.html_with_citations,
            extracted_by_ocr=old_document.extracted_by_ocr,
        )
        new_opinion.save(
            using='default',
            index=False,
        )
Beispiel #15
0
def make_and_save(item,
                  skipdupes=False,
                  min_dates=None,
                  start_dates=None,
                  testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued
                 or date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied
                  or date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item['file'])

    # special rule for Kentucky
    if item['court_id'] == 'kycourtapp' and main_date <= date(1975, 12, 31):
        item['court_id'] = 'kycourtapphigh'

    if min_dates is not None:
        if min_dates.get(item['court_id']) is not None:
            if main_date >= min_dates[item['court_id']]:
                print(main_date, 'after', min_dates[item['court_id']],
                      ' -- skipping.')
                return
    if start_dates is not None:
        if start_dates.get(item['court_id']) is not None:
            if main_date <= start_dates[item['court_id']]:
                print(main_date, 'before court founding:',
                      start_dates[item['court_id']], ' -- skipping.')
                return

    docket = Docket(source=Docket.COLUMBIA,
                    date_argued=date_argued,
                    date_reargued=date_reargued,
                    date_cert_granted=date_cert_granted,
                    date_cert_denied=date_cert_denied,
                    date_reargument_denied=date_reargument_denied,
                    court_id=item['court_id'],
                    case_name_short=item['case_name_short'] or '',
                    case_name=item['case_name'] or '',
                    case_name_full=item['case_name_full'] or '',
                    docket_number=item['docket'] or '')

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item['docket']:
                docket_no = item['docket'].lower()
                if 'claim no.' in docket_no:
                    docket_no = docket_no.split('claim no.')[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, '')
                docket_no = docket_no.strip('.').strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for months and a few
            # trivial words) in the citation, then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, '')
            num_letters = sum(
                non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate a bad citation, then
            # it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." %
                            (c, item['court_id'], item['docket']))
        else:
            found_citations.extend(found)
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        judges=item.get('judges', '') or "",
        precedential_status=('Unpublished'
                             if item['unpublished'] else 'Published'),
        date_filed=main_date,
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        source='Z',
        attorneys=item['attorneys'] or '',
        posture=item['posture'] or '',
        **citations_map)
    panel = [
        find_person(n, item['court_id'], case_date=panel_date)
        for n in item['panel']
    ]
    panel = [x for x in panel if x is not None]

    opinions = []
    for i, opinion_info in enumerate(item['opinions']):
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'],
                                 item['court_id'],
                                 case_date=panel_date)
        converted_text = convert_columbia_html(opinion_info['opinion'])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info['type']]
        if opinion_type == '020lead' and i > 0:
            opinion_type = '050addendum'

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info['per_curiam'],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info['sha1'],
            local_path=opinion_info['local_path'],
        )
        joined_by = [
            find_person(n, item['court_id'], case_date=panel_date)
            for n in opinion_info['joining']
        ]
        joined_by = [x for x in joined_by if x is not None]
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster)
        if dups:
            if skipdupes:
                print('Duplicate. skipping.')
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" %
                  (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise
Beispiel #16
0
class StaticFilesTest(TestCase):
    good_mp3_path = 'mp3/2014/06/09/ander_v._leo.mp3'
    good_txt_path = 'txt/2015/12/28/opinion_text.txt'
    good_pdf_path = 'pdf/2013/06/12/' + \
                    'in_re_motion_for_consent_to_disclosure_of_court_records.pdf'

    def setUp(self):
        self.court = Court.objects.get(pk='test')
        self.docket = Docket(case_name=u'Docket', court=self.court, source=Docket.DEFAULT)
        self.docket.save()

        self.audio = Audio(
            local_path_original_file=self.good_mp3_path,
            local_path_mp3=self.good_mp3_path,
            docket=self.docket,
            blocked=False,
            case_name_full='Ander v. Leo',
            date_created=datetime.date(2014, 6, 9)
        )
        self.audio.save(index=False)

        self.opinioncluster = OpinionCluster(
            case_name=u'Hotline Bling',
            docket=self.docket,
            date_filed=datetime.date(2015, 12, 14),
        )
        self.opinioncluster.save(index=False)

        self.txtopinion = Opinion(
            cluster=self.opinioncluster,
            type='Lead Opinion',
            local_path=self.good_txt_path
        )
        self.txtopinion.save(index=False)

        self.pdfopinion = Opinion(
            cluster=self.opinioncluster,
            type='Lead Opinion',
            local_path=self.good_pdf_path
        )
        self.pdfopinion.save(index=False)

    def test_serve_static_file_serves_mp3(self):
        request = HttpRequest()
        file_path = self.audio.local_path_mp3
        response = serve_static_file(request, file_path=self.good_mp3_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'audio/mpeg')
        self.assertIn('inline;', response['Content-Disposition'])

    def test_serve_static_file_serves_txt(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_txt_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'text/plain')
        self.assertIn('inline;', response['Content-Disposition'])
        self.assertIn(
            'FOR THE DISTRICT OF COLUMBIA CIRCUIT',
            response.content
        )

    def test_serve_static_file_serves_pdf(self):
        request = HttpRequest()
        response = serve_static_file(request, file_path=self.good_pdf_path)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response['Content-Type'], 'application/pdf')
        self.assertIn('inline;', response['Content-Disposition'])