Beispiel #1
0
def oppg_4_3(return_protein):
    T_step = -30  # increase the temp by this amount each iteration
    N = 15
    T_max = 1500
    d = 600
    N_T = (T_max // abs(T_step))
    count = 0

    # Matrix with all diameters for all twists and temp
    length = np.zeros((N_T, d))

    # Vector with mean energy for each temp
    L_mean = np.zeros(N_T)

    # Calculate energy
    protein = Protein(N, T_max)
    for j in range(T_max, -T_step, T_step):
        print(j)
        protein.change_temp(j)
        for i in range(0, d):
            protein.twist()
            length[count][i] = protein.diameter()
        L_mean[count] = np.mean(length[count])
        count += 1

    protein.change_temp(10**(-6))
    for i in range(0, d):
        protein.twist()
        length[N_T - 1] = protein.diameter()
    L_mean[N_T - 1] = np.mean(length[N_T - 1])
    L_mean = L_mean[::-1]

    # Create temp vector for plotting the mean diameter
    x = np.arange(0, T_max, -T_step)

    # Plot the mean diameter
    plt.figure('exercise-4-3')
    plt.title('Mean diameter')
    plt.grid()
    plt.xlabel('T')
    plt.ylabel('$<$L$>$')
    plt.plot(x, L_mean, color='#000000', linestyle='-')
    plt.show()

    if return_protein:
        return protein, N
Beispiel #2
0
def oppg_3():
    T_step = 5  # Increase the temp by this amount each iteration
    N = 15
    T = 10**(-6)  # Define temperature CLOSE to zero to avoid division by zero
    s = 0.003
    d_max = 10000
    T_max = 1500
    N_T = T_max // T_step

    # Matrix with all diameters for all twists and temps
    length = np.zeros((N_T, d_max))

    # Vector with mean energy for each temp
    L_mean = np.zeros(N_T)

    # Calculate mean diameter for temp close to zero
    protein = Protein(N, T)
    for i in range(0, d_max):
        protein.twist()
        length[0][i] = protein.diameter()
    L_mean[0] = np.mean(length[0][:d_max])

    # Calculate mean diameter for all other temps up to T_max
    for j in range(1, N_T):
        print(j)
        protein = Protein(N, j * T_step)
        d = int(np.ceil(d_max * np.exp(-s * (j * T_step))))
        for i in range(0, d):
            protein.twist()
            length[j][i] = protein.diameter()
        L_mean[j] = np.mean(length[j][:d])

    # Create temp vector for plotting the mean diameter
    x = np.arange(0, T_max, T_step)

    # Plot the mean diameter
    plt.figure('exercise-3')
    plt.title('Mean diameter')
    plt.grid(color='#ffffff', linestyle='-')
    plt.xlabel('T')
    plt.ylabel('$<L>$')
    plt.plot(x, L_mean, color='#000000', linestyle='-')
    plt.show()