def process(file_list): if not classify.CLASSIFIER: init() pred_list = classify.run(file_list, classify.CLASSIFIER, classify.LABEL_FILE) pred_dict = {} pred_dict["predictions"] = pred_list return pred_dict
def process(file_list): if not classify.CLASSIFIER: init() pred_list = classify.run(file_list, classify.CLASSIFIER, classify.LABEL_FILE) pred_dict = {} pred_dict['predictions'] = pred_list return pred_dict
def post(self): args = self.reqparse.parse_args() url = args['url'] # Read the image and save it path = read_image_from_url(url) print "Image Downloaded to: " + path # Run the classifier on the image results = classify.run(path) # Remove the image after analyzing remove_image(path) return results
def profile(): if request.method == "POST": file = request.files['file'] if file and allowed_file(file.filename): filename = secure_filename(file.filename) image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(image_path) data = run(image_path, cfg) os.remove(image_path) return render_template("display.html", data=data) return "did not work" return render_template("upload.html")
def upload_file(): if request.method == 'POST': file = request.files['image'] if file.filename == '': print('No selected file') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) return classify.run( os.path.join(app.config['UPLOAD_FOLDER'] + "/" + filename))
def test_post(): if request.method == 'POST': # print(request.get_json()) rev = request.get_json()['Img'] # print(rev) img_data = base64.b64decode(rev) with open('001.jpg', 'wb') as f: f.write(img_data) # result= classify.run(image) # print(request.get_data()) res = classify.run(image) return jsonify({'data': res}) else: return 'error'
def run(inimage): #resize image basewidth = 1080 img = PIL.Image.open(inimage) wpercent = (basewidth / float(img.size[0])) hsize = int((float(img.size[1]) * float(wpercent))) img = img.resize((basewidth, hsize), PIL.Image.ANTIALIAS) img.save('resized_image.jpg') #split image tiles = image_slicer.slice('resized_image.jpg',9) score=[0,0,0,0,0,0,0,0,0] #get least quality tile for tile in tiles: tile.image.save('tile.jpg') score[tile.number-1] = float(subprocess.check_output(['./brisque_cpp/brisquequality','-im','tile.jpg'])) index=score.index(max(score)) #get label of image classlabel=classify.run(inimage).split(' ', 1)[1] print classlabel #get classid of label searchfile = open("labelidmap.txt", "r") for line in searchfile: if classlabel in line: classid=int(line.split(':',1)[0]) searchfile.close() print classid #perform deepdraw #tiles[index].image=deepdraw.run(tiles[index].image, classid) image=deepdraw.run(tiles[index].image,classid) tiles[index].image=PIL.Image.fromarray(image.astype('uint8')) #im.save('new.png') im=image_slicer.join(tiles) im.save('final.png') return True ''' for tile in tiles: tile.image.show() ''' ''''
#Does something, probably. if cfg.plot == True: import plot as p if cfg.quick == True: p.run(cfg.name + "quick", quick = True) else: p.run(cfg.name) #Classifies the data into a varying number of categories if cfg.classify == True: import classify as c if cfg.quick == True: c.run(cfg.name + "quick", cfg.fit, quick = True) else: c.run(cfg.name, cfg.fit) #Creates Histograms for each category identied by learning algorithm if cfg.onedhistogram == True: import histogram as h if cfg.quick == True: h.run(cfg.name + "quick", int(cfg.groups), str(cfg.fit), quick = True) else: h.run(cfg.name, int(cfg.groups), str(cfg.fit)) end = time.time() print time.asctime(time.localtime()), "Code Ended"