Beispiel #1
0
    def _make_dense_block(
        self,
        num_layers,
        in_planes,
        block_idx,
        growth_rate=32,
        expansion=4,
        use_se=False,
        se_reduction_ratio=16,
    ):
        assert is_pos_int(in_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)

        # create a block of dense layers at same resolution:
        layers = OrderedDict()
        for idx in range(num_layers):
            layers[f"block{block_idx}-{idx}"] = _DenseLayer(
                in_planes + idx * growth_rate,
                growth_rate=growth_rate,
                expansion=expansion,
                use_se=use_se,
                se_reduction_ratio=se_reduction_ratio,
            )
        return nn.Sequential(layers)
Beispiel #2
0
    def __init__(
        self,
        convolutional_block,
        in_planes,
        out_planes,
        stride=1,
        mid_planes_and_cardinality=None,
        reduction=4,
        final_bn_relu=True,
    ):

        # assertions on inputs:
        assert is_pos_int(in_planes) and is_pos_int(out_planes)
        assert is_pos_int(stride) and is_pos_int(reduction)

        # set object fields:
        super(GenericLayer, self).__init__()
        self.convolutional_block = convolutional_block
        self.final_bn_relu = final_bn_relu

        # final batchnorm and relu layer:
        if final_bn_relu:
            self.bn = nn.BatchNorm2d(out_planes)
            self.relu = nn.ReLU(inplace=INPLACE)

        # define down-sampling layer (if direct residual impossible):
        self.downsample = None
        if stride != 1 or in_planes != out_planes:
            self.downsample = nn.Sequential(
                conv1x1(in_planes, out_planes, stride=stride),
                nn.BatchNorm2d(out_planes),
            )
Beispiel #3
0
    def __init__(
        self,
        in_planes,
        out_planes,
        stride=1,
        mid_planes_and_cardinality=None,
        reduction=4,
        final_bn_relu=True,
    ):

        # assertions on inputs:
        assert is_pos_int(in_planes) and is_pos_int(out_planes)
        assert is_pos_int(stride) and is_pos_int(reduction)

        # define convolutional block:
        convolutional_block = nn.Sequential(
            conv3x3(in_planes, out_planes, stride=stride),
            nn.BatchNorm2d(out_planes),
            nn.ReLU(inplace=INPLACE),
            conv3x3(out_planes, out_planes),
        )

        # call constructor of generic layer:
        super(BasicLayer, self).__init__(
            convolutional_block,
            in_planes,
            out_planes,
            stride=stride,
            reduction=reduction,
            final_bn_relu=final_bn_relu,
        )
Beispiel #4
0
    def _make_dense_block(
        self,
        num_layers,
        in_planes,
        block_idx,
        growth_rate=32,
        expansion=4,
        use_se=False,
        se_reduction_ratio=16,
    ):
        assert is_pos_int(in_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)

        # create a block of dense layers at same resolution:
        layers = []
        for idx in range(num_layers):
            layers.append(
                self.build_attachable_block(
                    f"block{block_idx}-{idx}",
                    _DenseLayer(
                        in_planes + idx * growth_rate,
                        growth_rate=growth_rate,
                        expansion=expansion,
                        use_se=use_se,
                        se_reduction_ratio=se_reduction_ratio,
                    ),
                ))
        return nn.Sequential(*layers)
Beispiel #5
0
    def __init__(
        self,
        dataset: Sequence,
        split: Optional[str],
        batchsize_per_replica: int,
        shuffle: bool,
        transform: Optional[Union[ClassyTransform, Callable]],
        num_samples: Optional[int],
    ) -> None:
        """
        Constructor for a ClassyDataset.

        Args:
            split: When set, split of dataset to use ("train", "test")
            batchsize_per_replica: Positive integer indicating batch size for each
                replica
            shuffle: Whether to shuffle between epochs
            transform: When set, transform to be applied to each sample
            num_samples: When set, this restricts the number of samples provided by
                the dataset
        """
        # Asserts:
        assert is_pos_int(batchsize_per_replica
                          ), "batchsize_per_replica must be a positive int"
        assert isinstance(shuffle, bool), "shuffle must be a boolean"
        assert num_samples is None or is_pos_int(
            num_samples), "num_samples must be a positive int or None"

        # Assignments:
        self.split = split
        self.batchsize_per_replica = batchsize_per_replica
        self.shuffle = shuffle
        self.transform = transform
        self.num_samples = num_samples
        self.dataset = dataset
    def __init__(self, in_planes, growth_rate=32, expansion=4):

        # assertions:
        assert is_pos_int(in_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)

        # add all layers to layer
        super(_DenseLayer, self).__init__()
        intermediate = expansion * growth_rate
        self.add_module("norm-1", nn.BatchNorm2d(in_planes))
        self.add_module("relu-1", nn.ReLU(inplace=INPLACE))
        self.add_module(
            "conv-1",
            nn.Conv2d(in_planes, intermediate, kernel_size=1, stride=1, bias=False),
        )
        self.add_module("norm-2", nn.BatchNorm2d(intermediate))
        self.add_module("relu-2", nn.ReLU(inplace=INPLACE))
        self.add_module(
            "conv-2",
            nn.Conv2d(
                intermediate,
                growth_rate,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=False,
            ),
        )
    def __init__(
        self,
        unique_id: str,
        num_classes: int,
        in_plane: int,
        zero_init_bias: bool = False,
    ):
        """Constructor for FullyConnectedHead

        Args:
            unique_id: A unique identifier for the head. Multiple instances of
                the same head might be attached to a model, and unique_id is used
                to refer to them.

            num_classes: Number of classes for the head. If None, then the fully
                connected layer is not applied.

            in_plane: Input size for the fully connected layer.
        """
        super().__init__(unique_id, num_classes)
        assert num_classes is None or is_pos_int(num_classes)
        assert is_pos_int(in_plane)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = None if num_classes is None else nn.Linear(in_plane, num_classes)

        if zero_init_bias:
            self.fc.bias.data.zero_()
Beispiel #8
0
def check_generic_args(args):
    """
    Perform assertions on generic command-line arguments.
    """

    # check types and values:
    assert is_pos_int(args.num_workers), "incorrect number of workers"
    assert is_pos_int(args.visdom_port), "incorrect visdom port"

    # create checkpoint folder if it does not exist:
    if args.checkpoint_folder != "" and not os.path.exists(args.checkpoint_folder):
        os.makedirs(args.checkpoint_folder, exist_ok=True)
        assert os.path.exists(args.checkpoint_folder), (
            "could not create folder %s" % args.checkpoint_folder
        )

    # when in debugging mode, enter debugger upon error:
    if args.debug:
        import sys
        from classy_vision.generic.debug import debug_info

        sys.excepthook = debug_info

    # check visdom server name:
    if args.visdom_server != "":
        if args.visdom_server.startswith("https://"):
            print("WARNING: Visdom does not work over HTTPS.")
            args.visdom_server = args.visdom_server[8:]
        if not args.visdom_server.startswith("http://"):
            args.visdom_server = "http://%s" % args.visdom_server

    # return input arguments:
    return args
Beispiel #9
0
    def __init__(
        self,
        unique_id: str,
        num_classes: Optional[int],
        in_plane: int,
        conv_planes: Optional[int] = None,
        activation: Optional[nn.Module] = None,
        zero_init_bias: bool = False,
        normalize_inputs: Optional[str] = None,
    ):
        """Constructor for FullyConnectedHead

        Args:
            unique_id: A unique identifier for the head. Multiple instances of
                the same head might be attached to a model, and unique_id is used
                to refer to them.
            num_classes: Number of classes for the head. If None, then the fully
                connected layer is not applied.
            in_plane: Input size for the fully connected layer.
            conv_planes: If specified, applies a 1x1 convolutional layer to the input
                before passing it to the average pooling layer. The convolution is also
                followed by a BatchNorm and an activation.
            activation: The activation to be applied after the convolutional layer.
                Unused if `conv_planes` is not specified.
            zero_init_bias: Zero initialize the bias
            normalize_inputs: If specified, normalize the inputs after performing
                average pooling using the specified method. Supports "l2" normalization.
        """
        super().__init__(unique_id, num_classes)
        assert num_classes is None or is_pos_int(num_classes)
        assert is_pos_int(in_plane)
        if conv_planes is not None and activation is None:
            raise TypeError("activation cannot be None if conv_planes is specified")
        if normalize_inputs is not None and normalize_inputs != NORMALIZE_L2:
            raise ValueError(
                f"Unsupported value for normalize_inputs: {normalize_inputs}"
            )
        self.conv = (
            nn.Conv2d(in_plane, conv_planes, kernel_size=1, bias=False)
            if conv_planes
            else None
        )
        self.bn = nn.BatchNorm2d(conv_planes) if conv_planes else None
        self.activation = activation
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = (
            None
            if num_classes is None
            else nn.Linear(
                in_plane if conv_planes is None else conv_planes, num_classes
            )
        )
        self.normalize_inputs = normalize_inputs

        if zero_init_bias:
            self.fc.bias.data.zero_()
    def __init__(
        self,
        in_planes,
        out_planes,
        stride=1,
        mid_planes_and_cardinality=None,
        reduction=4,
        final_bn_relu=True,
        use_se=False,
        se_reduction_ratio=16,
    ):

        # assertions on inputs:
        assert is_pos_int(in_planes) and is_pos_int(out_planes)
        assert (is_pos_int(stride) or is_pos_int_tuple(stride)) and is_pos_int(
            reduction
        )

        # define convolutional layers:
        bottleneck_planes = int(math.ceil(out_planes / reduction))
        cardinality = 1
        if mid_planes_and_cardinality is not None:
            mid_planes, cardinality = mid_planes_and_cardinality
            bottleneck_planes = mid_planes * cardinality

        convolutional_block = nn.Sequential(
            conv1x1(in_planes, bottleneck_planes),
            nn.BatchNorm2d(bottleneck_planes),
            nn.ReLU(inplace=INPLACE),
            conv3x3(
                bottleneck_planes, bottleneck_planes, stride=stride, groups=cardinality
            ),
            nn.BatchNorm2d(bottleneck_planes),
            nn.ReLU(inplace=INPLACE),
            conv1x1(bottleneck_planes, out_planes),
        )

        # call constructor of generic layer:
        super(BottleneckLayer, self).__init__(
            convolutional_block,
            in_planes,
            out_planes,
            stride=stride,
            reduction=reduction,
            final_bn_relu=final_bn_relu,
            use_se=use_se,
            se_reduction_ratio=se_reduction_ratio,
        )
    def __init__(self, topk, target_is_one_hot=True, num_classes=None):
        """
        args:
            topk: list of int `k` values.
            target_is_one_hot: boolean, if class labels are one-hot encoded.
            num_classes: int, number of classes.
        """
        assert isinstance(topk, list), "topk must be a list"
        assert len(topk) > 0, "topk list should have at least one element"
        assert [is_pos_int(x) for x in topk], "each value in topk must be >= 1"
        if not target_is_one_hot:
            assert (
                type(num_classes) == int and num_classes > 0
            ), "num_classes must be positive integer"

        self._topk = topk
        self._target_is_one_hot = target_is_one_hot
        self._num_classes = num_classes

        # _total_* variables store running, in-sync totals for the
        # metrics. These should not be communicated / summed.
        self._total_correct_predictions_k = None
        self._total_correct_targets = None

        # _curr_* variables store counts since the last sync. Only
        # these should be summed across workers and they are reset
        # after each communication
        self._curr_correct_predictions_k = None
        self._curr_correct_targets = None

        # Initialize all values properly
        self.reset()
    def from_config(cls, config: Dict[str, Any]) -> "MultiStepParamScheduler":
        """Instantiates a MultiStepParamScheduler from a configuration.

        Args:
            config: A configuration for a MultiStepParamScheduler.
                See :func:`__init__` for parameters expected in the config.

        Returns:
            A MultiStepParamScheduler instance.
        """
        assert (
            "values" in config
            and isinstance(config["values"], list)
            and len(config["values"]) > 0
        ), "Non-Equi Step scheduler requires a list of at least one param value"
        assert is_pos_int(config["num_epochs"]), "Num epochs must be a positive integer"
        assert config["num_epochs"] >= len(
            config["values"]
        ), "Num epochs must be greater than param schedule"

        milestones = config.get("milestones", None)
        if "milestones" in config:
            assert (
                isinstance(config["milestones"], list)
                and len(config["milestones"]) == len(config["values"]) - 1
            ), "Non-Equi Step scheduler requires a list of %d epochs" % (
                len(config["values"]) - 1
            )

        return cls(
            values=config["values"],
            num_epochs=config["num_epochs"],
            milestones=milestones,
            update_interval=UpdateInterval.from_config(config, UpdateInterval.EPOCH),
        )
Beispiel #13
0
    def __init__(self, topk):
        """
        args:
            topk: list of int `k` values.
        """
        super().__init__()

        assert isinstance(topk, list), "topk must be a list"
        assert len(topk) > 0, "topk list should have at least one element"
        assert [is_pos_int(x) for x in topk], "each value in topk must be >= 1"

        self._topk = topk

        # _total_* variables store running, in-sync totals for the
        # metrics. These should not be communicated / summed.
        self._total_correct_predictions_k = None
        self._total_sample_count = None

        # _curr_* variables store counts since the last sync. Only
        # these should be summed across workers and they are reset
        # after each communication
        self._curr_correct_predictions_k = None
        self._curr_sample_count = None

        # Initialize all values properly
        self.reset()
Beispiel #14
0
    def __init__(self, num_layers, in_planes, growth_rate=32, expansion=4):

        # assertions:
        assert is_pos_int(in_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)

        # create block of dense layers at same resolution:
        super(_DenseBlock, self).__init__()
        for idx in range(num_layers):
            layer = _DenseLayer(
                in_planes + idx * growth_rate,
                growth_rate=growth_rate,
                expansion=expansion,
            )
            self.add_module("denselayer-%d" % (idx + 1), layer)
Beispiel #15
0
    def __init__(self, num_meters: int, topk_values: List[int], meter_names: List[str]):
        super().__init__()

        assert is_pos_int(num_meters), "num_meters must be positive"
        assert isinstance(topk_values, list), "topk_values must be a list"
        assert len(topk_values) > 0, "topk_values list should have at least one element"
        assert [
            is_pos_int(x) for x in topk_values
        ], "each value in topk_values must be >= 1"
        self._num_meters = num_meters
        self._topk_values = topk_values
        self._meters = [
            AccuracyMeter(self._topk_values) for _ in range(self._num_meters)
        ]
        self._meter_names = meter_names
        self.reset()
    def __init__(self, in_planes, out_planes, reduction=2):

        # assertions:
        assert is_pos_int(in_planes)
        assert is_pos_int(out_planes)
        assert is_pos_int(reduction)

        # create layers for pooling:
        super(_Transition, self).__init__()
        self.add_module("pool-norm", nn.BatchNorm2d(in_planes))
        self.add_module("pool-relu", nn.ReLU(inplace=INPLACE))
        self.add_module(
            "pool-conv",
            nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False),
        )
        self.add_module(
            "pool-pool", nn.AvgPool2d(kernel_size=reduction, stride=reduction)
        )
    def __init__(
        self,
        convolutional_block,
        in_planes,
        out_planes,
        stride=1,
        mid_planes_and_cardinality=None,
        reduction=4,
        final_bn_relu=True,
        use_se=False,
        se_reduction_ratio=16,
    ):

        # assertions on inputs:
        assert is_pos_int(in_planes) and is_pos_int(out_planes)
        assert (is_pos_int(stride) or is_pos_int_tuple(stride)) and is_pos_int(
            reduction
        )

        # set object fields:
        super(GenericLayer, self).__init__()
        self.convolutional_block = convolutional_block
        self.final_bn_relu = final_bn_relu

        # final batchnorm and relu layer:
        if final_bn_relu:
            self.bn = nn.BatchNorm2d(out_planes)
            self.relu = nn.ReLU(inplace=INPLACE)

        # define down-sampling layer (if direct residual impossible):
        self.downsample = None
        if (stride != 1 and stride != (1, 1)) or in_planes != out_planes:
            self.downsample = nn.Sequential(
                conv1x1(in_planes, out_planes, stride=stride),
                nn.BatchNorm2d(out_planes),
            )

        self.se = (
            SqueezeAndExcitationLayer(out_planes, reduction_ratio=se_reduction_ratio)
            if use_se
            else None
        )
Beispiel #18
0
 def __init__(self, meters_config: AttrDict):
     self.meters_config = meters_config
     num_meters = self.meters_config["num_meters"]
     meter_names = self.meters_config["meter_names"]
     assert is_pos_int(num_meters), "num_meters must be positive"
     self._num_meters = num_meters
     self._meters = [
         MeanAPMeter.from_config(meters_config) for _ in range(self._num_meters)
     ]
     self._meter_names = meter_names
     self.reset()
    def __init__(self, topk, clips_per_video_train, clips_per_video_test):
        """
        Args:
            topk: list of int `k` values.
            clips_per_video_train: No. of clips sampled per video at train time
            clips_per_video_test: No. of clips sampled per video at test time
        """
        super().__init__(clips_per_video_train, clips_per_video_test)
        assert isinstance(topk, Sequence), "topk must be a sequence"
        assert len(topk) > 0, "topk list should have at least one element"
        assert [is_pos_int(x) for x in topk], "each value in topk must be >= 1"

        self._accuracy_meter = AccuracyMeter(topk)
    def from_config(cls, config: Dict[str,
                                      Any]) -> "FullyConvolutionalLinearHead":
        """Instantiates a FullyConvolutionalLinearHead from a configuration.

        Args:
            config: A configuration for a FullyConvolutionalLinearHead.
                See :func:`__init__` for parameters expected in the config.

        Returns:
            A FullyConvolutionalLinearHead instance.
        """
        required_args = ["in_plane", "num_classes"]
        for arg in required_args:
            assert arg in config, "argument %s is required" % arg

        config.update(
            {"activation_func": config.get("activation_func", "softmax")})
        config.update({"use_dropout": config.get("use_dropout", False)})

        pool_size = config.get("pool_size", None)
        if pool_size is not None:
            assert isinstance(pool_size, Sequence) and len(pool_size) == 3
            for pool_size_dim in pool_size:
                assert is_pos_int(pool_size_dim)

        assert is_pos_int(config["in_plane"])
        assert is_pos_int(config["num_classes"])

        num_classes = config.get("num_classes", None)
        in_plane = config["in_plane"]
        return cls(
            config["unique_id"],
            num_classes,
            in_plane,
            pool_size,
            config["activation_func"],
            config["use_dropout"],
            config.get("dropout_ratio", 0.5),
        )
    def __init__(
        self,
        in_planes,
        out_planes,
        stride=1,
        mid_planes_and_cardinality=None,
        reduction=1,
        final_bn_relu=True,
        use_se=False,
        se_reduction_ratio=16,
    ):

        # assertions on inputs:
        assert is_pos_int(in_planes) and is_pos_int(out_planes)
        assert (is_pos_int(stride) or is_pos_int_tuple(stride)) and is_pos_int(
            reduction
        )

        # define convolutional block:
        convolutional_block = nn.Sequential(
            conv3x3(in_planes, out_planes, stride=stride),
            nn.BatchNorm2d(out_planes),
            nn.ReLU(inplace=INPLACE),
            conv3x3(out_planes, out_planes),
        )

        # call constructor of generic layer:
        super().__init__(
            convolutional_block,
            in_planes,
            out_planes,
            stride=stride,
            reduction=reduction,
            final_bn_relu=final_bn_relu,
            use_se=use_se,
            se_reduction_ratio=se_reduction_ratio,
        )
Beispiel #22
0
    def __init__(self, loss_config: AttrDict):
        super(NCELossWithMemory, self).__init__()

        self.loss_config = loss_config
        memory_params = self.loss_config.memory_params
        memory_params.memory_size = self.loss_config.num_train_samples
        assert is_pos_int(
            memory_params.memory_size
        ), f"Memory size must be positive: {memory_params.memory_size}"

        assert self.loss_config.loss_type in [
            "nce",
            "cross_entropy",
        ], f"Supported types are nce/cross_entropy. Found {self.loss_config.loss_type}"

        self.loss_type = self.loss_config.loss_type

        self.update_memory_on_forward = memory_params.update_mem_on_forward
        self.update_memory_emb_index = self.loss_config.update_mem_with_emb_index
        if self.update_memory_on_forward is False:
            # we have multiple embeddings used in NCE
            # but we update memory with only one of them
            assert self.update_memory_emb_index >= 0

        # first setup the NCEAverage method to get the scores of the output wrt
        # memory bank negatives
        self.nce_average = NCEAverage(
            memory_params=memory_params,
            negative_sampling_params=self.loss_config.negative_sampling_params,
            T=self.loss_config.temperature,
            Z=self.loss_config.norm_constant,
            loss_type=self.loss_type,
        )

        if self.loss_type == "nce":
            # setup the actual NCE loss
            self.nce_criterion = NCECriterion(
                self.loss_config.num_train_samples)
        elif self.loss_type == "cross_entropy":
            # cross-entropy loss. Also called InfoNCE
            self.xe_criterion = nn.CrossEntropyLoss()

        # other constants
        self.normalize_embedding = self.loss_config.norm_embedding
        self.loss_weights = self.loss_config.loss_weights
        self.init_sync_memory = False
        self.ignore_index = self.loss_config.get("ignore_index", -1)
Beispiel #23
0
    def __init__(
        self,
        num_blocks,
        num_classes,
        init_planes,
        growth_rate,
        expansion,
        small_input,
        final_bn_relu,
        use_se=False,
        se_reduction_ratio=16,
    ):
        """
        Implementation of a standard densely connected network (DenseNet).

        Contains the following attachable blocks:
            block{block_idx}-{idx}: This is the output of each dense block,
                indexed by the block index and the index of the dense layer
            transition-{idx}: This is the output of the transition layers
            trunk_output: The final output of the `DenseNet`. This is
                where a `fully_connected` head is normally attached.

        Args:
            small_input: set to `True` for 32x32 sized image inputs.
            final_bn_relu: set to `False` to exclude the final batchnorm and
                ReLU layers. These settings are useful when training Siamese
                networks.
            use_se: Enable squeeze and excitation
            se_reduction_ratio: The reduction ratio to apply in the excitation
                stage. Only used if `use_se` is `True`.
        """
        super().__init__()

        # assertions:
        assert isinstance(num_blocks, Sequence)
        assert all(is_pos_int(b) for b in num_blocks)
        assert num_classes is None or is_pos_int(num_classes)
        assert is_pos_int(init_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)
        assert type(small_input) == bool

        # initial convolutional block:
        self._num_classes = num_classes
        self.num_blocks = num_blocks
        self.small_input = small_input
        if self.small_input:
            self.initial_block = nn.Sequential(
                nn.Conv2d(3,
                          init_planes,
                          kernel_size=3,
                          stride=1,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(init_planes),
                nn.ReLU(inplace=INPLACE),
            )
        else:
            self.initial_block = nn.Sequential(
                nn.Conv2d(3,
                          init_planes,
                          kernel_size=7,
                          stride=2,
                          padding=3,
                          bias=False),
                nn.BatchNorm2d(init_planes),
                nn.ReLU(inplace=INPLACE),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            )
        # loop over spatial resolutions:
        num_planes = init_planes
        blocks = nn.Sequential()
        for idx, num_layers in enumerate(num_blocks):
            # add dense block
            block = self._make_dense_block(
                num_layers,
                num_planes,
                idx,
                growth_rate=growth_rate,
                expansion=expansion,
                use_se=use_se,
                se_reduction_ratio=se_reduction_ratio,
            )
            blocks.add_module(f"block_{idx}", block)
            num_planes = num_planes + num_layers * growth_rate

            # add transition layer:
            if idx != len(num_blocks) - 1:
                trans = _Transition(num_planes, num_planes // 2)
                blocks.add_module(f"transition-{idx}", trans)
                num_planes = num_planes // 2

        blocks.add_module(
            "trunk_output",
            self._make_trunk_output_block(num_planes, final_bn_relu))

        self.features = blocks

        # initialize weights of convolutional and batchnorm layers:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2.0 / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.bias.data.zero_()
    def __init__(
        self,
        num_blocks,
        init_planes: int = 64,
        reduction: int = 4,
        small_input: bool = False,
        zero_init_bn_residuals: bool = False,
        base_width_and_cardinality: Optional[Union[Tuple, List]] = None,
        basic_layer: bool = False,
        final_bn_relu: bool = True,
        use_se: bool = False,
        se_reduction_ratio: int = 16,
    ):
        """
            Implementation of `ResNeXt <https://arxiv.org/pdf/1611.05431.pdf>`_.

            Args:
                small_input: set to `True` for 32x32 sized image inputs.
                final_bn_relu: set to `False` to exclude the final batchnorm and
                    ReLU layers. These settings are useful when training Siamese
                    networks.
                use_se: Enable squeeze and excitation
                se_reduction_ratio: The reduction ratio to apply in the excitation
                    stage. Only used if `use_se` is `True`.
        """
        super().__init__()

        # assertions on inputs:
        assert type(num_blocks) == list
        assert all(is_pos_int(n) for n in num_blocks)
        assert is_pos_int(init_planes) and is_pos_int(reduction)
        assert type(small_input) == bool
        assert (
            type(zero_init_bn_residuals) == bool
        ), "zero_init_bn_residuals must be a boolean, set to true if gamma of last\
             BN of residual block should be initialized to 0.0, false for 1.0"
        assert base_width_and_cardinality is None or (
            isinstance(base_width_and_cardinality, (tuple, list))
            and len(base_width_and_cardinality) == 2
            and is_pos_int(base_width_and_cardinality[0])
            and is_pos_int(base_width_and_cardinality[1])
        )
        assert isinstance(use_se, bool), "use_se has to be a boolean"

        # initial convolutional block:
        self.num_blocks = num_blocks
        self.small_input = small_input
        self._make_initial_block(small_input, init_planes, basic_layer)

        # compute number of planes at each spatial resolution:
        out_planes = [init_planes * 2 ** i * reduction for i in range(len(num_blocks))]
        in_planes = [init_planes] + out_planes[:-1]

        # create subnetworks for each spatial resolution:
        blocks = []
        for idx in range(len(out_planes)):
            mid_planes_and_cardinality = None
            if base_width_and_cardinality is not None:
                w, c = base_width_and_cardinality
                mid_planes_and_cardinality = (w * 2 ** idx, c)
            new_block = self._make_resolution_block(
                in_planes[idx],
                out_planes[idx],
                idx,
                num_blocks[idx],  # num layers
                stride=1 if idx == 0 else 2,
                mid_planes_and_cardinality=mid_planes_and_cardinality,
                reduction=reduction,
                final_bn_relu=final_bn_relu or (idx != (len(out_planes) - 1)),
                use_se=use_se,
                se_reduction_ratio=se_reduction_ratio,
            )
            blocks.append(new_block)
        self.blocks = nn.Sequential(*blocks)

        self.out_planes = out_planes[-1]
        self._num_classes = out_planes

        # initialize weights:
        self._initialize_weights(zero_init_bn_residuals)
Beispiel #25
0
    def __init__(
        self,
        num_blocks,
        init_planes: int = 64,
        reduction: int = 4,
        small_input: bool = False,
        zero_init_bn_residuals: bool = False,
        base_width_and_cardinality: Optional[Union[Tuple, List]] = None,
        basic_layer: bool = False,
        final_bn_relu: bool = True,
        bn_weight_decay: Optional[bool] = False,
        use_se: bool = False,
        se_reduction_ratio: int = 16,
    ):
        """
            Implementation of `ResNeXt <https://arxiv.org/pdf/1611.05431.pdf>`_.

            Args:
                small_input: set to `True` for 32x32 sized image inputs.
                final_bn_relu: set to `False` to exclude the final batchnorm and
                    ReLU layers. These settings are useful when training Siamese
                    networks.
                use_se: Enable squeeze and excitation
                se_reduction_ratio: The reduction ratio to apply in the excitation
                    stage. Only used if `use_se` is `True`.
        """
        super().__init__()

        # assertions on inputs:
        assert type(num_blocks) == list
        assert all(is_pos_int(n) for n in num_blocks)
        assert is_pos_int(init_planes) and is_pos_int(reduction)
        assert type(small_input) == bool
        assert type(bn_weight_decay) == bool
        assert (
            type(zero_init_bn_residuals) == bool
        ), "zero_init_bn_residuals must be a boolean, set to true if gamma of last\
             BN of residual block should be initialized to 0.0, false for 1.0"

        assert base_width_and_cardinality is None or (
            isinstance(base_width_and_cardinality,
                       (tuple, list)) and len(base_width_and_cardinality) == 2
            and is_pos_int(base_width_and_cardinality[0])
            and is_pos_int(base_width_and_cardinality[1]))
        assert isinstance(use_se, bool), "use_se has to be a boolean"

        # Chooses whether to apply weight decay to batch norm
        # parameters. This improves results in some situations,
        # e.g. ResNeXt models trained / evaluated using the Imagenet
        # dataset, but can cause worse performance in other scenarios
        self.bn_weight_decay = bn_weight_decay

        # initial convolutional block:
        self.num_blocks = num_blocks
        self.small_input = small_input
        self._make_initial_block(small_input, init_planes, basic_layer)

        # compute number of planes at each spatial resolution:
        out_planes = [
            init_planes * 2**i * reduction for i in range(len(num_blocks))
        ]
        in_planes = [init_planes] + out_planes[:-1]

        # create subnetworks for each spatial resolution:
        blocks = []
        for idx in range(len(out_planes)):
            mid_planes_and_cardinality = None
            if base_width_and_cardinality is not None:
                w, c = base_width_and_cardinality
                mid_planes_and_cardinality = (w * 2**idx, c)
            new_block = self._make_resolution_block(
                in_planes[idx],
                out_planes[idx],
                idx,
                num_blocks[idx],  # num layers
                stride=1 if idx == 0 else 2,
                mid_planes_and_cardinality=mid_planes_and_cardinality,
                reduction=reduction,
                final_bn_relu=final_bn_relu or (idx != (len(out_planes) - 1)),
                use_se=use_se,
                se_reduction_ratio=se_reduction_ratio,
            )
            blocks.append(nn.Sequential(*new_block))
        self.blocks = nn.Sequential(*blocks)

        self.out_planes = out_planes[-1]
        self._num_classes = out_planes

        # initialize weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode="fan_out",
                                        nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Init BatchNorm gamma to 0.0 for last BN layer, it gets 0.2-0.3% higher
        # final val top1 for larger batch sizes.
        if zero_init_bn_residuals:
            for m in self.modules():
                if isinstance(m, GenericLayer):
                    if hasattr(m, "bn"):
                        nn.init.constant_(m.bn.weight, 0)
Beispiel #26
0
    def _parse_config(config):
        ret_config = {}
        required_args = [
            "input_planes",
            "clip_crop_size",
            "skip_transformation_type",
            "residual_transformation_type",
            "frames_per_clip",
            "num_blocks",
        ]
        for arg in required_args:
            assert arg in config, "resnext3d model requires argument %s" % arg
            ret_config[arg] = config[arg]

        # Default setting for model stem, which is considered as stage 0. Stage
        # index starts from 0 as implemented in ResStageBase._block_name() method.
        #   stem_planes: No. of output channles of conv op in stem
        #   stem_temporal_kernel: temporal size of conv op in stem
        #   stem_spatial_kernel: spatial size of conv op in stem
        #   stem_maxpool: by default, spatial maxpool op is disabled in stem
        ret_config.update({
            "input_key":
            config.get("input_key", None),
            "stem_name":
            config.get("stem_name", "resnext3d_stem"),
            "stem_planes":
            config.get("stem_planes", 64),
            "stem_temporal_kernel":
            config.get("stem_temporal_kernel", 3),
            "stem_spatial_kernel":
            config.get("stem_spatial_kernel", 7),
            "stem_maxpool":
            config.get("stem_maxpool", False),
        })
        # Default setting for model stages 1, 2, 3 and 4
        #   stage_planes: No. of output channel of 1st conv op in stage 1
        #   stage_temporal_kernel_basis: Basis of temporal kernel sizes for each of
        #       the stage.
        #   temporal_conv_1x1: if True, do temporal convolution in the fist
        #      1x1 Conv3d. Otherwise, do it in the second 3x3 Conv3d (default settting)
        #   stage_temporal_stride: temporal stride for each stage
        #   stage_spatial_stride: spatial stride for each stage
        #   num_groups: No. of groups in 2nd (group) conv in the residual transformation
        #   width_per_group: No. of channels per group in 2nd (group) conv in the
        #     residual transformation
        ret_config.update({
            "stage_planes":
            config.get("stage_planes", 256),
            "stage_temporal_kernel_basis":
            config.get("stage_temporal_kernel_basis", [[3], [3], [3], [3]]),
            "temporal_conv_1x1":
            config.get("temporal_conv_1x1", [False, False, False, False]),
            "stage_temporal_stride":
            config.get("stage_temporal_stride", [1, 2, 2, 2]),
            "stage_spatial_stride":
            config.get("stage_spatial_stride", [1, 2, 2, 2]),
            "num_groups":
            config.get("num_groups", 1),
            "width_per_group":
            config.get("width_per_group", 64),
        })
        # Default setting for model parameter initialization
        ret_config.update({
            "zero_init_residual_transform":
            config.get("zero_init_residual_transform", False)
        })
        assert is_pos_int_list(ret_config["num_blocks"])
        assert is_pos_int(ret_config["stem_planes"])
        assert is_pos_int(ret_config["stem_temporal_kernel"])
        assert is_pos_int(ret_config["stem_spatial_kernel"])
        assert type(ret_config["stem_maxpool"]) == bool
        assert is_pos_int(ret_config["stage_planes"])
        assert type(ret_config["stage_temporal_kernel_basis"]) == list
        assert all(
            is_pos_int_list(l)
            for l in ret_config["stage_temporal_kernel_basis"])
        assert type(ret_config["temporal_conv_1x1"]) == list
        assert is_pos_int_list(ret_config["stage_temporal_stride"])
        assert is_pos_int_list(ret_config["stage_spatial_stride"])
        assert is_pos_int(ret_config["num_groups"])
        assert is_pos_int(ret_config["width_per_group"])
        return ret_config
Beispiel #27
0
def image_map(
    mapcoord: Union[np.ndarray, torch.Tensor],
    dataset: Union[torch.utils.data.dataloader.DataLoader,
                   torch.utils.data.dataset.Dataset],
    mapsize: int = 5000,
    imsize: int = 32,
    unnormalize: Optional[Callable] = None,
    snap_to_grid: bool = False,
) -> torch.ByteTensor:
    """Constructs a 2D map of images.

    The 2D coordinates for each of the images are specified in `mapcoord`, the
    corresponding images are in `dataset`. Optional arguments set the size of
    the map images, the size of the images themselves, the unnormalization
    transform, and whether or not to snap images to a grid.
    """

    # assertions:
    if type(mapcoord) == np.ndarray:
        mapcoord = torch.from_numpy(mapcoord)
    assert torch.is_tensor(mapcoord)
    if isinstance(dataset, torch.utils.data.dataloader.DataLoader):
        dataset = dataset.dataset
    assert isinstance(dataset, torch.utils.data.dataset.Dataset)
    assert is_pos_int(mapsize)
    assert is_pos_int(imsize)
    if unnormalize is not None:
        assert callable(unnormalize)

    # initialize some variables:
    import torchvision.transforms.functional as F

    background = 255
    mapim = torch.ByteTensor(3, mapsize, mapsize).fill_(background)

    # normalize map coordinates:
    mapc = mapcoord.add(-(mapcoord.min()))
    mapc.div_(mapc.max())

    # loop over images:
    for idx in range(len(dataset)):

        # compute grid location:
        if snap_to_grid:
            y = 1 + int(math.floor(mapc[idx][0] * (mapsize - imsize - 2)))
            x = 1 + int(math.floor(mapc[idx][1] * (mapsize - imsize - 2)))
        else:
            y = 1 + int(
                math.floor(mapc[idx][0] * (math.floor(mapsize - imsize) - 2)))
            x = 1 + int(
                math.floor(mapc[idx][1] * (math.floor(mapsize - imsize) - 2)))

        # check whether we can overwrite this location:
        overwrite = not snap_to_grid
        if not overwrite:
            segment = mapim.narrow(1, y, imsize).narrow(2, x, imsize)
            overwrite = segment.eq(background).all()

        # draw image:
        if overwrite:

            # load, unnormalize, and resize image:
            image = dataset[idx][0]
            if unnormalize is not None:
                image = unnormalize(image)
            resized_im = F.to_tensor(
                F.resize(F.to_pil_image(image), imsize, Image.BILINEAR))

            # place image:
            segment = mapim.narrow(1, y, imsize).narrow(2, x, imsize)
            segment.copy_(resized_im.mul_(255.0).byte())

    # return map:
    return mapim
Beispiel #28
0
    def __init__(
        self,
        num_blocks,
        init_planes,
        reduction,
        small_input,
        zero_init_bn_residuals,
        base_width_and_cardinality,
        basic_layer,
        final_bn_relu,
    ):
        """
            Implementation of `ResNeXt <https://arxiv.org/pdf/1611.05431.pdf>`_.

            Set ``small_input`` to `True` for 32x32 sized image inputs.

            Set ``final_bn_relu`` to `False` to exclude the final batchnorm and
            ReLU layers. These settings are useful when training Siamese networks.
        """
        super().__init__()

        # assertions on inputs:
        assert type(num_blocks) == list
        assert all(is_pos_int(n) for n in num_blocks)
        assert is_pos_int(init_planes) and is_pos_int(reduction)
        assert type(small_input) == bool
        assert (
            type(zero_init_bn_residuals) == bool
        ), "zero_init_bn_residuals must be a boolean, set to true if gamma of last\
             BN of residual block should be initialized to 0.0, false for 1.0"

        assert base_width_and_cardinality is None or (
            isinstance(base_width_and_cardinality,
                       (tuple, list)) and len(base_width_and_cardinality) == 2
            and is_pos_int(base_width_and_cardinality[0])
            and is_pos_int(base_width_and_cardinality[1]))

        # we apply weight decay to batch norm if the model is a ResNeXt and we don't if
        # it is a ResNet
        self.bn_weight_decay = base_width_and_cardinality is not None

        # initial convolutional block:
        self.num_blocks = num_blocks
        self.small_input = small_input
        self._make_initial_block(small_input, init_planes, basic_layer)

        # compute number of planes at each spatial resolution:
        out_planes = [
            init_planes * 2**i * reduction for i in range(len(num_blocks))
        ]
        in_planes = [init_planes] + out_planes[:-1]

        # create subnetworks for each spatial resolution:
        blocks = []
        for idx in range(len(out_planes)):
            mid_planes_and_cardinality = None
            if base_width_and_cardinality is not None:
                w, c = base_width_and_cardinality
                mid_planes_and_cardinality = (w * 2**idx, c)
            new_block = self._make_resolution_block(
                in_planes[idx],
                out_planes[idx],
                idx,
                num_blocks[idx],  # num layers
                stride=1 if idx == 0 else 2,
                mid_planes_and_cardinality=mid_planes_and_cardinality,
                reduction=reduction,
                final_bn_relu=final_bn_relu or (idx != (len(out_planes) - 1)),
            )
            blocks.append(nn.Sequential(*new_block))
        self.blocks = nn.Sequential(*blocks)

        self.out_planes = out_planes[-1]
        self._num_classes = out_planes

        # initialize weights:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode="fan_out",
                                        nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Init BatchNorm gamma to 0.0 for last BN layer, it gets 0.2-0.3% higher
        # final val top1 for larger batch sizes.
        if zero_init_bn_residuals:
            for m in self.modules():
                if isinstance(m, GenericLayer):
                    if hasattr(m, "bn"):
                        nn.init.constant_(m.bn.weight, 0)
Beispiel #29
0
    def __init__(
        self,
        num_blocks,
        num_classes,
        init_planes,
        growth_rate,
        expansion,
        small_input,
        final_bn_relu,
    ):
        """
            Implementation of a standard densely connected network (DenseNet).

            Set `small_input` to `True` for 32x32 sized image inputs.

            Set `final_bn_relu` to `False` to exclude the final batchnorm and ReLU
            layers. These settings are useful when
            training Siamese networks.
        """
        super().__init__()

        # assertions:
        assert type(num_blocks) == list
        assert all(is_pos_int(b) for b in num_blocks)
        assert num_classes is None or is_pos_int(num_classes)
        assert is_pos_int(init_planes)
        assert is_pos_int(growth_rate)
        assert is_pos_int(expansion)
        assert type(small_input) == bool

        # initial convolutional block:
        self._num_classes = num_classes
        self.num_blocks = num_blocks
        self.small_input = small_input
        if self.small_input:
            self.initial_block = nn.Sequential(
                nn.Conv2d(3,
                          init_planes,
                          kernel_size=3,
                          stride=1,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(init_planes),
                nn.ReLU(inplace=INPLACE),
            )
        else:
            self.initial_block = nn.Sequential(
                nn.Conv2d(3,
                          init_planes,
                          kernel_size=7,
                          stride=2,
                          padding=3,
                          bias=False),
                nn.BatchNorm2d(init_planes),
                nn.ReLU(inplace=INPLACE),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            )
        # loop over spatial resolutions:
        num_planes = init_planes
        self.features = nn.Sequential()
        for idx, num_layers in enumerate(num_blocks):

            # add dense block:
            block = _DenseBlock(num_layers,
                                num_planes,
                                growth_rate=growth_rate,
                                expansion=expansion)
            self.features.add_module("denseblock-%d" % (idx + 1), block)
            num_planes = num_planes + num_layers * growth_rate

            # add transition layer:
            if idx != len(num_blocks) - 1:
                trans = _Transition(num_planes, num_planes // 2)
                self.features.add_module("transition-%d" % (idx + 1), trans)
                num_planes = num_planes // 2

        # final batch normalization:
        if final_bn_relu:
            self.features.add_module("norm-final", nn.BatchNorm2d(num_planes))
            self.features.add_module("relu-final", nn.ReLU(inplace=INPLACE))

        # final classifier:
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = None if num_classes is None else nn.Linear(
            num_planes, num_classes)
        self.num_planes = num_planes

        # initialize weights of convolutional and batchnorm layers:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2.0 / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.bias.data.zero_()