def do_clean(settings_file=None):
    params = get_params(configfile=settings_file, section='clean')
    print params.imagename
    clean(vis=params.vis,
          imagename=params.imagename,
          mode=params.mode,
          niter=int(params.niter),
          threshold=params.threshold,
          psfmode=params.psfmode,
          imagermode=params.imagermode,
          ftmachine=params.ftmachine,
          imsize=int(params.imsize),
          cell=params.cell,
          stokes=params.stokes,
          weighting=params.weighting,
          robust=float(params.robust))
    im = params.imagename + '.image'
    exportfits(imagename=im, fitsimage=im + '.fits', overwrite=True)
    im = params.imagename + '.psf'
    exportfits(imagename=im, fitsimage=im + '.fits', overwrite=True)
Beispiel #2
0
def mk_qlook_image(trange,
                   doimport=False,
                   docalib=False,
                   ncpu=10,
                   twidth=12,
                   stokes=None,
                   antenna='0~12',
                   lowcutoff_freq=3.7,
                   imagedir=None,
                   spws=['1~5', '6~10', '11~15', '16~25'],
                   toTb=True,
                   overwrite=True,
                   doslfcal=False,
                   verbose=False):
    '''
       trange: can be 1) a single Time() object: use the entire day
                      2) a range of Time(), e.g., Time(['2017-08-01 00:00','2017-08-01 23:00'])
                      3) a single or a list of UDBms file(s)
                      4) None -- use current date Time.now()
    '''
    antenna0 = antenna
    if type(trange) == Time:
        mslist = trange2ms(trange=trange, doimport=doimport)
        vis = mslist['ms']
        tsts = [l.to_datetime() for l in mslist['tstlist']]
    if type(trange) == str:
        try:
            date = Time(trange)
            mslist = trange2ms(trange=trange, doimport=doimport)
            vis = mslist['ms']
            tsts = [l.to_datetime() for l in mslist['tstlist']]
        except:
            vis = [trange]
            tsts = []
            for v in vis:
                tb.open(v + '/OBSERVATION')
                tsts.append(
                    Time(tb.getcell('TIME_RANGE')[0] / 24 / 3600,
                         format='mjd').datetime)
                tb.close()
    subdir = [tst.strftime("%Y/%m/%d/") for tst in tsts]

    for idx, f in enumerate(vis):
        if f[-1] == '/':
            vis[idx] = f[:-1]
    if not stokes:
        stokes = 'XX'

    if not imagedir:
        imagedir = './'
    imres = {
        'Succeeded': [],
        'BeginTime': [],
        'EndTime': [],
        'ImageName': [],
        'Spw': [],
        'Vis': [],
        'Synoptic': {
            'Succeeded': [],
            'BeginTime': [],
            'EndTime': [],
            'ImageName': [],
            'Spw': [],
            'Vis': []
        }
    }
    for n, msfile in enumerate(vis):
        msfilebs = os.path.basename(msfile)
        imdir = imagedir + subdir[n]
        if not os.path.exists(imdir):
            os.makedirs(imdir)
        if doslfcal:
            slfcalms = './' + msfilebs + '.xx'
            split(msfile,
                  outputvis=slfcalms,
                  datacolumn='corrected',
                  correlation='XX')
        cfreqs = getspwfreq(msfile)
        for spw in spws:
            antenna = antenna0
            if spw == '':
                continue
            spwran = [s.zfill(2) for s in spw.split('~')]
            freqran = [cfreqs[int(s)] for s in spw.split('~')]
            cfreq = np.mean(freqran)
            bmsz = max(150. / cfreq, 20.)
            uvrange = '<10klambda'
            if doslfcal:
                slfcal_img = './' + msfilebs + '.slf.spw' + spw.replace(
                    '~', '-') + '.slfimg'
                slfcal_tb = './' + msfilebs + '.slf.spw' + spw.replace(
                    '~', '-') + '.slftb'
                try:
                    clean(vis=slfcalms,
                          antenna=antenna,
                          imagename=slfcal_img,
                          spw=spw,
                          mode='mfs',
                          timerange='',
                          imagermode='csclean',
                          psfmode='clark',
                          imsize=[512, 512],
                          cell=['5arcsec'],
                          niter=100,
                          gain=0.05,
                          stokes='I',
                          weighting='natural',
                          restoringbeam=[str(bmsz) + 'arcsec'],
                          pbcor=False,
                          interactive=False,
                          usescratch=True)
                except:
                    print('error in cleaning spw: ' + spw)
                    break
                gaincal(vis=slfcalms,
                        refant='0',
                        antenna=antenna,
                        caltable=slfcal_tb,
                        spw=spw,
                        uvrange='',
                        gaintable=[],
                        selectdata=True,
                        timerange='',
                        solint='600s',
                        gaintype='G',
                        calmode='p',
                        combine='',
                        minblperant=3,
                        minsnr=2,
                        append=False)
                if not os.path.exists(slfcal_tb):
                    print('No solution found in spw: ' + spw)
                    break
                else:
                    clearcal(slfcalms)
                    delmod(slfcalms)
                    applycal(vis=slfcalms,
                             gaintable=[slfcal_tb],
                             spw=spw,
                             selectdata=True,
                             antenna=antenna,
                             interp='nearest',
                             flagbackup=False,
                             applymode='calonly',
                             calwt=False)
                    msfile = slfcalms

            imsize = 512
            cell = ['5arcsec']
            if len(spwran) == 2:
                spwstr = spwran[0] + '~' + spwran[1]
            else:
                spwstr = spwran[0]

            restoringbeam = ['{0:.1f}arcsec'.format(bmsz)]
            imagesuffix = '.spw' + spwstr.replace('~', '-')
            if cfreq > 10.:
                antenna = antenna + ';!0&1;!0&2'  # deselect the shortest baselines
            # else:
            #     antenna = antenna + ';!0&1'  # deselect the shortest baselines

            res = ptclean3(vis=msfile,
                           imageprefix=imdir,
                           imagesuffix=imagesuffix,
                           twidth=twidth,
                           uvrange=uvrange,
                           spw=spw,
                           ncpu=ncpu,
                           niter=1000,
                           gain=0.05,
                           antenna=antenna,
                           imsize=imsize,
                           cell=cell,
                           stokes=stokes,
                           doreg=True,
                           usephacenter=False,
                           overwrite=overwrite,
                           toTb=toTb,
                           restoringbeam=restoringbeam,
                           specmode="mfs",
                           deconvolver="hogbom",
                           datacolumn='data',
                           pbcor=True)

            if res:
                imres['Succeeded'] += res['Succeeded']
                imres['BeginTime'] += res['BeginTime']
                imres['EndTime'] += res['EndTime']
                imres['ImageName'] += res['ImageName']
                imres['Spw'] += [spwstr] * len(res['ImageName'])
                imres['Vis'] += [msfile] * len(res['ImageName'])
            else:
                continue

    if len(vis) == 1:
        # produce the band-by-band whole-day images
        ms.open(msfile)
        ms.selectinit()
        timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True)
        tim = timfreq['time']
        ms.close()

        cfreqs = getspwfreq(msfile)
        imdir = imagedir + subdir[0]
        if not os.path.exists(imdir):
            os.makedirs(imdir)
        for spw in spws:
            antenna = antenna0
            if spw == '':
                spw = '{:d}~{:d}'.format(
                    next(x[0] for x in enumerate(cfreqs)
                         if x[1] > lowcutoff_freq),
                    len(cfreqs) - 1)
            spwran = [s.zfill(2) for s in spw.split('~')]
            freqran = [cfreqs[int(s)] for s in spw.split('~')]
            cfreq = np.mean(freqran)
            bmsz = max(150. / cfreq, 20.)
            uvrange = ''
            imsize = 512
            cell = ['5arcsec']
            if len(spwran) == 2:
                spwstr = spwran[0] + '~' + spwran[1]
            else:
                spwstr = spwran[0]

            restoringbeam = ['{0:.1f}arcsec'.format(bmsz)]
            imagesuffix = '.synoptic.spw' + spwstr.replace('~', '-')
            antenna = antenna + ';!0&1'  # deselect the shortest baselines

            res = ptclean3(vis=msfile,
                           imageprefix=imdir,
                           imagesuffix=imagesuffix,
                           twidth=len(tim),
                           uvrange=uvrange,
                           spw=spw,
                           ncpu=1,
                           niter=0,
                           gain=0.05,
                           antenna=antenna,
                           imsize=imsize,
                           cell=cell,
                           stokes=stokes,
                           doreg=True,
                           usephacenter=False,
                           overwrite=overwrite,
                           toTb=toTb,
                           restoringbeam=restoringbeam,
                           specmode="mfs",
                           deconvolver="hogbom",
                           datacolumn='data',
                           pbcor=True)
            if res:
                imres['Synoptic']['Succeeded'] += res['Succeeded']
                imres['Synoptic']['BeginTime'] += res['BeginTime']
                imres['Synoptic']['EndTime'] += res['EndTime']
                imres['Synoptic']['ImageName'] += res['ImageName']
                imres['Synoptic']['Spw'] += [spwstr] * len(res['ImageName'])
                imres['Synoptic']['Vis'] += [msfile] * len(res['ImageName'])
            else:
                continue

    # save it for debugging purposes
    np.savez('imres.npz', imres=imres)

    return imres
Beispiel #3
0
def WEI_plot(dofile=True,
             vis=None,
             timerange=None,
             spw='',
             aiafits='',
             imagehead='',
             workdir='',
             spwCol=3,
             phasecenter='J2000 11h00m48 06d14m60'):
    if vis[-1] == '/':
        vis = vis[:-1]
    ms.open(vis)
    spwInfo = ms.getspectralwindowinfo()
    ms.close()
    tb.open(vis)
    starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    endtim = Time(tb.getcell('TIME',
                             tb.nrows() - 1) / 24. / 3600.,
                  format='mjd')
    tb.close()
    tb.open(vis + '/SPECTRAL_WINDOW')
    reffreqs = tb.getcol('REF_FREQUENCY')
    bdwds = tb.getcol('TOTAL_BANDWIDTH')
    cfreqs = reffreqs + bdwds / 2.
    tb.close()
    sbeam = 35.
    #get timerange from vis file
    if not timerange:
        timerange = '{0}~{1}'.format(
            starttim.iso.replace('-', '/').replace(' ', '/'),
            endtim.iso.replace('-', '/').replace(' ', '/'))
    nspw = len(spwInfo)
    #draw plot aia
    fig = plt.figure(figsize=(12, 7), dpi=100)
    gs1 = gridspec.GridSpec(4, 3)
    gs1.update(left=0.08, right=0.32, wspace=0.05)
    ax1 = plt.subplot(gs1[11])
    aiamap = smap.Map(aiafits)
    aiamap.plot(axes=ax1)
    #do clean spwCol by spwCol
    for cur_spwCol in range(0, np.floor_divide(nspw, spwCol)):
        if ((cur_spwCol + 1) * spwCol) < nspw:
            cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + str(
                (cur_spwCol + 1) * spwCol)
        else:
            cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + '31'
        imagename = imagehead + cur_spwRange + 'SPWs'
        cur_eovsaFits = imagename + '.fits'
        if cur_spwCol < 6:
            cur_mask = '/srg/ywei/data/eovsa/mask/sep_6mask_' + str(
                cur_spwCol + 1) + '.rgn'
        else:
            cur_mask = '/srg/ywei/data/eovsa/mask/sep_6/mask_6.rgn'
        if dofile:
            #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[256,256], niter=100, cell=['2arcsec'] )
            #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[512,512], niter=1000, cell=['1arcsec'],stokes='XX', gain=0.05,weighting='briggs', mode='mfs',imagermode='csclean',psfmode='clark',robust=0.0,restoringbeam = ['10.0arcsec'], mask=cur_mask,pbcor=True)
            clean(vis=vis,
                  spw=cur_spwRange,
                  timerange=timerange,
                  imagename=imagename,
                  imsize=[512, 512],
                  niter=1000,
                  cell=['1arcsec'],
                  stokes='XX',
                  gain=0.05,
                  weighting='briggs',
                  mode='mfs',
                  imagermode='csclean',
                  psfmode='clark',
                  robust=0.0,
                  restoringbeam=['10.0arcsec'],
                  mask='',
                  pbcor=True)
            print 'fits name =' + str(cur_eovsaFits)
            hf.imreg(vis=vis,
                     imagefile=imagename + '.image',
                     fitsfile=imagename + '.fits',
                     timerange=timerange)
        #plot eovsa
        cur_emap = smap.Map(cur_eovsaFits)
        cur_axname = plt.subplot(gs1[cur_spwCol + 1])
        (npol, nf, nx, ny) = cur_emap.data.shape
        print 'shape = ' + str(cur_emap.data.shape)
        if npol != 1:
            print 'To be determined'
        else:
            cur_emap.data = cur_emap.data.reshape((512, 512))
            cur_emap.plot_settings['cmap'] = plt.get_cmap('jet')
            cur_emap.plot(axes=cur_axname)
Beispiel #4
0
                    interactive = False
                try:
                    clean(
                        vis=slfcalms,
                        antenna=antennas,
                        imagename=slfcal_img,
                        uvrange=uvranges[n],
                        #spw=sp,
                        spw=spwran,
                        mode='mfs',
                        timerange=trange,
                        imagermode='csclean',
                        psfmode='clark',
                        imsize=[256, 256],
                        cell=['2arcsec'],
                        niter=niters[n],
                        gain=0.05,
                        stokes=pol,
                        weighting='briggs',
                        robust=robusts[n],
                        #phasecenter='J2000 11h14m09 04d52m53',
                        phasecenter='J2000 11h00m48 06d14m60',
                        #mask='box [ [ 75pix , 90pix] , [205pix, 165pix ] ]',
                        mask=cur_mask,
                        #mask='',
                        restoringbeam=[str(bm) + 'arcsec'],
                        pbcor=False,
                        interactive=interactive,
                        usescratch=True)

                except:
Beispiel #5
0
def calibeovsa(vis=None,
               caltype=None,
               interp=None,
               docalib=True,
               doflag=True,
               flagant=None,
               doimage=False,
               imagedir=None,
               antenna=None,
               timerange=None,
               spw=None,
               stokes=None,
               doconcat=False,
               msoutdir=None,
               keep_orig_ms=True):
    '''

    :param vis: EOVSA visibility dataset(s) to be calibrated 
    :param caltype:
    :param interp:
    :param docalib:
    :param qlookimage:
    :param flagant:
    :param stokes:
    :param doconcat:
    :return:
    '''

    if type(vis) == str:
        vis = [vis]

    for idx, f in enumerate(vis):
        if f[-1] == '/':
            vis[idx] = f[:-1]

    for msfile in vis:
        casalog.origin('calibeovsa')
        if not caltype:
            casalog.post(
                "Caltype not provided. Perform reference phase calibration and daily phase calibration."
            )
            caltype = [
                'refpha', 'phacal', 'fluxcal'
            ]  ## use this line after the phacal is applied  # caltype = ['refcal']
        if not os.path.exists(msfile):
            casalog.post("Input visibility does not exist. Aborting...")
            continue
        if msfile.endswith('/'):
            msfile = msfile[:-1]
        if not msfile[-3:] in ['.ms', '.MS']:
            casalog.post(
                "Invalid visibility. Please provide a proper visibility file ending with .ms"
            )
        # if not caltable:
        #    caltable=[os.path.basename(vis).replace('.ms','.'+c) for c in caltype]

        # get band information
        tb.open(msfile + '/SPECTRAL_WINDOW')
        nspw = tb.nrows()
        bdname = tb.getcol('NAME')
        bd_nchan = tb.getcol('NUM_CHAN')
        bd = [int(b[4:]) - 1 for b in bdname]  # band index from 0 to 33
        # nchans = tb.getcol('NUM_CHAN')
        # reffreqs = tb.getcol('REF_FREQUENCY')
        # cenfreqs = np.zeros((nspw))
        tb.close()
        tb.open(msfile + '/ANTENNA')
        nant = tb.nrows()
        antname = tb.getcol('NAME')
        antlist = [str(ll) for ll in range(len(antname) - 1)]
        antennas = ','.join(antlist)
        tb.close()

        # get time stamp, use the beginning of the file
        tb.open(msfile + '/OBSERVATION')
        trs = {'BegTime': [], 'EndTime': []}
        for ll in range(tb.nrows()):
            tim0, tim1 = Time(tb.getcell('TIME_RANGE', ll) / 24 / 3600,
                              format='mjd')
            trs['BegTime'].append(tim0)
            trs['EndTime'].append(tim1)
        tb.close()
        trs['BegTime'] = Time(trs['BegTime'])
        trs['EndTime'] = Time(trs['EndTime'])
        btime = np.min(trs['BegTime'])
        etime = np.max(trs['EndTime'])
        # ms.open(vis)
        # summary = ms.summary()
        # ms.close()
        # btime = Time(summary['BeginTime'], format='mjd')
        # etime = Time(summary['EndTime'], format='mjd')
        ## stop using ms.summary to avoid conflicts with importeovsa
        t_mid = Time((btime.mjd + etime.mjd) / 2., format='mjd')
        print "This scan observed from {} to {} UTC".format(
            btime.iso, etime.iso)
        gaintables = []

        if ('refpha' in caltype) or ('refamp' in caltype) or ('refcal'
                                                              in caltype):
            refcal = ra.sql2refcalX(btime)
            pha = refcal['pha']  # shape is 15 (nant) x 2 (npol) x 34 (nband)
            pha[np.where(refcal['flag'] == 1)] = 0.
            amp = refcal['amp']
            amp[np.where(refcal['flag'] == 1)] = 1.
            t_ref = refcal['timestamp']
            # find the start and end time of the local day when refcal is registered
            try:
                dhr = t_ref.LocalTime.utcoffset().total_seconds() / 60. / 60.
            except:
                dhr = -7.
            bt = Time(np.fix(t_ref.mjd + dhr / 24.) - dhr / 24., format='mjd')
            et = Time(bt.mjd + 1., format='mjd')
            (yr, mon, day) = (bt.datetime.year, bt.datetime.month,
                              bt.datetime.day)
            dirname = caltbdir + str(yr) + str(mon).zfill(2) + '/'
            if not os.path.exists(dirname):
                os.mkdir(dirname)
            # check if there is any ROACH reboot between the reference calibration found and the current data
            t_rbts = db.get_reboot(Time([t_ref, btime]))
            if not t_rbts:
                casalog.post(
                    "Reference calibration is derived from observation at " +
                    t_ref.iso)
                print "Reference calibration is derived from observation at " + t_ref.iso
            else:
                casalog.post(
                    "Oh crap! Roach reboot detected between the reference calibration time "
                    + t_ref.iso + ' and the current observation at ' +
                    btime.iso)
                casalog.post("Aborting...")
                print "Oh crap! Roach reboot detected between the reference calibration time " + t_ref.iso + ' and the current observation at ' + btime.iso
                print "Aborting..."

            para_pha = []
            para_amp = []
            calpha = np.zeros((nspw, 15, 2))
            calamp = np.zeros((nspw, 15, 2))
            for s in range(nspw):
                for n in range(15):
                    for p in range(2):
                        calpha[s, n, p] = pha[n, p, bd[s]]
                        calamp[s, n, p] = amp[n, p, bd[s]]
                        para_pha.append(np.degrees(pha[n, p, bd[s]]))
                        para_amp.append(amp[n, p, bd[s]])

        if 'fluxcal' in caltype:
            calfac = pc.get_calfac(Time(t_mid.iso.split(' ')[0] + 'T23:59:59'))
            t_bp = Time(calfac['timestamp'], format='lv')
            if int(t_mid.mjd) == int(t_bp.mjd):
                accalfac = calfac['accalfac']  # (ant x pol x freq)
                # tpcalfac = calfac['tpcalfac']  # (ant x pol x freq)
                caltb_autoamp = dirname + t_bp.isot[:-4].replace(
                    ':', '').replace('-', '') + '.bandpass'
                if not os.path.exists(caltb_autoamp):
                    bandpass(vis=msfile,
                             caltable=caltb_autoamp,
                             solint='inf',
                             refant='eo01',
                             minblperant=0,
                             minsnr=0,
                             bandtype='B',
                             docallib=False)
                    tb.open(caltb_autoamp, nomodify=False)  # (ant x spw)
                    bd_chanidx = np.hstack([[0], bd_nchan.cumsum()])
                    for ll in range(nspw):
                        antfac = np.sqrt(
                            accalfac[:, :, bd_chanidx[ll]:bd_chanidx[ll + 1]])
                        # # antfac *= tpcalfac[:, :,bd_chanidx[ll]:bd_chanidx[ll + 1]]
                        antfac = np.moveaxis(antfac, 0, 2)
                        cparam = np.zeros((2, bd_nchan[ll], nant))
                        cparam[:, :, :-3] = 1.0 / antfac
                        tb.putcol('CPARAM', cparam + 0j, ll * nant, nant)
                        paramerr = tb.getcol('PARAMERR', ll * nant, nant)
                        paramerr = paramerr * 0
                        tb.putcol('PARAMERR', paramerr, ll * nant, nant)
                        bpflag = tb.getcol('FLAG', ll * nant, nant)
                        bpant1 = tb.getcol('ANTENNA1', ll * nant, nant)
                        bpflagidx, = np.where(bpant1 >= 13)
                        bpflag[:] = False
                        bpflag[:, :, bpflagidx] = True
                        tb.putcol('FLAG', bpflag, ll * nant, nant)
                        bpsnr = tb.getcol('SNR', ll * nant, nant)
                        bpsnr[:] = 100.0
                        bpsnr[:, :, bpflagidx] = 0.0
                        tb.putcol('SNR', bpsnr, ll * nant, nant)
                    tb.close()
                    msg_prompt = "Scaling calibration is derived for {}.".format(
                        msfile)
                    casalog.post(msg_prompt)
                    print msg_prompt
                gaintables.append(caltb_autoamp)
            else:
                msg_prompt = "Caution: No TPCAL is available on {}. No scaling calibration is derived for {}.".format(
                    t_mid.datetime.strftime('%b %d, %Y'), msfile)
                casalog.post(msg_prompt)
                print msg_prompt

        if ('refpha' in caltype) or ('refcal' in caltype):
            # caltb_pha = os.path.basename(vis).replace('.ms', '.refpha')
            # check if the calibration table already exists
            caltb_pha = dirname + t_ref.isot[:-4].replace(':', '').replace(
                '-', '') + '.refpha'
            if not os.path.exists(caltb_pha):
                gencal(vis=msfile,
                       caltable=caltb_pha,
                       caltype='ph',
                       antenna=antennas,
                       pol='X,Y',
                       spw='0~' + str(nspw - 1),
                       parameter=para_pha)
            gaintables.append(caltb_pha)
        if ('refamp' in caltype) or ('refcal' in caltype):
            # caltb_amp = os.path.basename(vis).replace('.ms', '.refamp')
            caltb_amp = dirname + t_ref.isot[:-4].replace(':', '').replace(
                '-', '') + '.refamp'
            if not os.path.exists(caltb_amp):
                gencal(vis=msfile,
                       caltable=caltb_amp,
                       caltype='amp',
                       antenna=antennas,
                       pol='X,Y',
                       spw='0~' + str(nspw - 1),
                       parameter=para_amp)
            gaintables.append(caltb_amp)

        # calibration for the change of delay center between refcal time and beginning of scan -- hopefully none!
        xml, buf = ch.read_calX(4, t=[t_ref, btime], verbose=False)
        if buf:
            dly_t2 = Time(stf.extract(buf[0], xml['Timestamp']), format='lv')
            dlycen_ns2 = stf.extract(buf[0], xml['Delaycen_ns'])[:15]
            xml, buf = ch.read_calX(4, t=t_ref)
            dly_t1 = Time(stf.extract(buf, xml['Timestamp']), format='lv')
            dlycen_ns1 = stf.extract(buf, xml['Delaycen_ns'])[:15]
            dlycen_ns_diff = dlycen_ns2 - dlycen_ns1
            for n in range(2):
                dlycen_ns_diff[:, n] -= dlycen_ns_diff[0, n]
            print 'Multi-band delay is derived from delay center difference at {} & {}'.format(
                dly_t1.iso, dly_t2.iso)
            # print '=====Delays relative to Ant 14====='
            # for i, dl in enumerate(dlacen_ns_diff[:, 0] - dlacen_ns_diff[13, 0]):
            #     ant = antlist[i]
            #     print 'Ant eo{0:02d}: x {1:.2f} ns & y {2:.2f} ns'.format(int(ant) + 1, dl
            #           dlacen_ns_diff[i, 1] - dlacen_ns_diff[13, 1])
            # caltb_mbd0 = os.path.basename(vis).replace('.ms', '.mbd0')
            caltb_dlycen = dirname + dly_t2.isot[:-4].replace(':', '').replace(
                '-', '') + '.dlycen'
            if not os.path.exists(caltb_dlycen):
                gencal(vis=msfile,
                       caltable=caltb_dlycen,
                       caltype='mbd',
                       pol='X,Y',
                       antenna=antennas,
                       parameter=dlycen_ns_diff.flatten().tolist())
            gaintables.append(caltb_dlycen)

        if 'phacal' in caltype:
            phacals = np.array(
                ra.sql2phacalX([bt, et], neat=True, verbose=False))
            if not phacals.any() or len(phacals) == 0:
                print "Found no phacal records in SQL database, will skip phase calibration"
            else:
                # first generate all phacal calibration tables if not already exist
                t_phas = Time([phacal['t_pha'] for phacal in phacals])
                # sort the array in ascending order by t_pha
                sinds = t_phas.mjd.argsort()
                t_phas = t_phas[sinds]
                phacals = phacals[sinds]
                caltbs_phambd = []
                for i, phacal in enumerate(phacals):
                    # filter out phase cals with reference time stamp >30 min away from the provided refcal time
                    if (phacal['t_ref'].jd -
                            refcal['timestamp'].jd) > 30. / 1440.:
                        del phacals[i]
                        del t_phas[i]
                        continue
                    else:
                        t_pha = phacal['t_pha']
                        phambd_ns = phacal['pslope']
                        for n in range(2):
                            phambd_ns[:, n] -= phambd_ns[0, n]
                        # set all flagged values to be zero
                        phambd_ns[np.where(phacal['flag'] == 1)] = 0.
                        caltb_phambd = dirname + t_pha.isot[:-4].replace(
                            ':', '').replace('-', '') + '.phambd'
                        caltbs_phambd.append(caltb_phambd)
                        if not os.path.exists(caltb_phambd):
                            gencal(vis=msfile,
                                   caltable=caltb_phambd,
                                   caltype='mbd',
                                   pol='X,Y',
                                   antenna=antennas,
                                   parameter=phambd_ns.flatten().tolist())

                # now decides which table to apply depending on the interpolation method ("neatest" or "linear")
                if interp == 'nearest':
                    tbind = np.argmin(np.abs(t_phas.mjd - t_mid.mjd))
                    dt = np.min(np.abs(t_phas.mjd - t_mid.mjd)) * 24.
                    print "Selected nearest phase calibration table at " + t_phas[
                        tbind].iso
                    gaintables.append(caltbs_phambd[tbind])
                if interp == 'linear':
                    # bphacal = ra.sql2phacalX(btime)
                    # ephacal = ra.sql2phacalX(etime,reverse=True)
                    bt_ind, = np.where(t_phas.mjd < btime.mjd)
                    et_ind, = np.where(t_phas.mjd > etime.mjd)
                    if len(bt_ind) == 0 and len(et_ind) == 0:
                        print "No phacal found before or after the ms data within the day of observation"
                        print "Skipping daily phase calibration"
                    elif len(bt_ind) > 0 and len(et_ind) == 0:
                        gaintables.append(caltbs_phambd[bt_ind[-1]])
                    elif len(bt_ind) == 0 and len(et_ind) > 0:
                        gaintables.append(caltbs_phambd[et_ind[0]])
                    elif len(bt_ind) > 0 and len(et_ind) > 0:
                        bphacal = phacals[bt_ind[-1]]
                        ephacal = phacals[et_ind[0]]
                        # generate a new table interpolating between two daily phase calibrations
                        t_pha_mean = Time(np.mean(
                            [bphacal['t_pha'].mjd, ephacal['t_pha'].mjd]),
                                          format='mjd')
                        phambd_ns = (bphacal['pslope'] +
                                     ephacal['pslope']) / 2.
                        for n in range(2):
                            phambd_ns[:, n] -= phambd_ns[0, n]
                        # set all flagged values to be zero
                        phambd_ns[np.where(bphacal['flag'] == 1)] = 0.
                        phambd_ns[np.where(ephacal['flag'] == 1)] = 0.
                        caltb_phambd_interp = dirname + t_pha_mean.isot[:-4].replace(
                            ':', '').replace('-', '') + '.phambd'
                        if not os.path.exists(caltb_phambd_interp):
                            gencal(vis=msfile,
                                   caltable=caltb_phambd_interp,
                                   caltype='mbd',
                                   pol='X,Y',
                                   antenna=antennas,
                                   parameter=phambd_ns.flatten().tolist())
                        print "Using phase calibration table interpolated between records at " + bphacal[
                            't_pha'].iso + ' and ' + ephacal['t_pha'].iso
                        gaintables.append(caltb_phambd_interp)

        if docalib:
            clearcal(msfile)
            applycal(vis=msfile,
                     gaintable=gaintables,
                     applymode='calflag',
                     calwt=False)
            # delete the interpolated phase calibration table
            try:
                caltb_phambd_interp
            except:
                pass
            else:
                if os.path.exists(caltb_phambd_interp):
                    shutil.rmtree(caltb_phambd_interp)
        if doflag:
            # flag zeros and NaNs
            flagdata(vis=msfile, mode='clip', clipzeros=True)
            if flagant:
                try:
                    flagdata(vis=msfile, antenna=flagant)
                except:
                    print "Something wrong with flagant. Abort..."

        if doimage:
            from matplotlib import pyplot as plt
            from suncasa.utils import helioimage2fits as hf
            from sunpy import map as smap

            if not antenna:
                antenna = '0~12'
            if not stokes:
                stokes = 'XX'
            if not timerange:
                timerange = ''
            if not spw:
                spw = '1~3'
            if not imagedir:
                imagedir = '.'
            #(yr, mon, day) = (bt.datetime.year, bt.datetime.month, bt.datetime.day)
            #dirname = imagedir + str(yr) + '/' + str(mon).zfill(2) + '/' + str(day).zfill(2) + '/'
            #if not os.path.exists(dirname):
            #    os.makedirs(dirname)
            bds = [spw]
            nbd = len(bds)
            imgs = []
            for bd in bds:
                if '~' in bd:
                    bdstr = bd.replace('~', '-')
                else:
                    bdstr = str(bd).zfill(2)
                imname = imagedir + '/' + os.path.basename(msfile).replace(
                    '.ms', '.bd' + bdstr)
                print 'Cleaning image: ' + imname
                try:
                    clean(vis=msfile,
                          imagename=imname,
                          antenna=antenna,
                          spw=bd,
                          timerange=timerange,
                          imsize=[512],
                          cell=['5.0arcsec'],
                          stokes=stokes,
                          niter=500)
                except:
                    print 'clean not successfull for band ' + str(bd)
                else:
                    imgs.append(imname + '.image')
                junks = ['.flux', '.mask', '.model', '.psf', '.residual']
                for junk in junks:
                    if os.path.exists(imname + junk):
                        shutil.rmtree(imname + junk)

            tranges = [btime.iso + '~' + etime.iso] * nbd
            fitsfiles = [img.replace('.image', '.fits') for img in imgs]
            hf.imreg(vis=msfile,
                     timerange=tranges,
                     imagefile=imgs,
                     fitsfile=fitsfiles,
                     usephacenter=False)
            plt.figure(figsize=(6, 6))
            for i, fitsfile in enumerate(fitsfiles):
                plt.subplot(1, nbd, i + 1)
                eomap = smap.Map(fitsfile)
                sz = eomap.data.shape
                if len(sz) == 4:
                    eomap.data = eomap.data.reshape((sz[2], sz[3]))
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot()
                eomap.draw_limb()
                eomap.draw_grid()

            plt.show()

    if doconcat:
        if len(vis) > 1:
            # from suncasa.eovsa import concateovsa as ce
            from suncasa.tasks import concateovsa_cli as ce
            if msoutdir is None:
                msoutdir = './'
            concatvis = os.path.basename(vis[0])
            concatvis = msoutdir + '/' + concatvis.split('.')[0] + '_concat.ms'
            ce.concateovsa(vis,
                           concatvis,
                           datacolumn='corrected',
                           keep_orig_ms=keep_orig_ms,
                           cols2rm="model,corrected")
            return [concatvis]
    else:
        return vis
Beispiel #6
0
def clean_iter(
        tim, freq, vis, imageprefix, imagesuffix, ncpu, twidth, doreg,
        usephacenter, reftime, ephem, msinfo, toTb, overwrite, outlierfile,
        field, spw, selectdata, uvrange, antenna, scan, observation, intent,
        mode, resmooth, gridmode, wprojplanes, facets, cfcache, rotpainc,
        painc, aterm, psterm, mterm, wbawp, conjbeams, epjtable, interpolation,
        niter, gain, threshold, psfmode, imagermode, ftmachine, mosweight,
        scaletype, multiscale, negcomponent, smallscalebias, interactive, mask,
        nchan, start, width, outframe, veltype, imsize, cell, phasecenter,
        restfreq, stokes, weighting, robust, uvtaper, outertaper, innertaper,
        modelimage, restoringbeam, pbcor, minpb, usescratch, noise, npixels,
        npercycle, cyclefactor, cyclespeedup, nterms, reffreq, chaniter,
        flatnoise, allowchunk, btidx):
    from taskinit import ms
    from taskinit import qa
    # from  __casac__.quanta import quanta as qa
    from __main__ import default, inp
    #from clean import clean
    from clean_cli import clean_cli as clean
    bt = btidx  # 0
    if bt + twidth < len(tim) - 1:
        et = btidx + twidth - 1
    else:
        et = len(tim) - 1

    # tim_d = tim/3600./24.-np.fix(tim/3600./24.)

    if bt == 0:
        bt_d = tim[bt] - ((tim[bt + 1] - tim[bt]) / 2)
    else:
        bt_d = tim[bt] - ((tim[bt] - tim[bt - 1]) / 2)
    if et == (len(tim) - 1) or et == -1:
        et_d = tim[et] + ((tim[et] - tim[et - 1]) / 2)
    else:
        et_d = tim[et] + ((tim[et + 1] - tim[et]) / 2)

    #
    # bt_d=tim[bt]
    # et_d=tim[et]+0.005

    timerange = qa.time(qa.quantity(bt_d, 's'), prec=9, form='ymd')[0] + '~' + \
                qa.time(qa.quantity(et_d, 's'), prec=9, form='ymd')[0]
    tmid = (bt_d + et_d) / 2.
    btstr = qa.time(qa.quantity(bt_d, 's'), prec=9, form='fits')[0]
    etstr = qa.time(qa.quantity(et_d, 's'), prec=9, form='fits')[0]
    print 'cleaning timerange: ' + timerange

    image0 = btstr.replace(':', '').replace('-', '')
    imname = imageprefix + image0 + imagesuffix
    if overwrite or (len(glob.glob(imname + '*')) == 0):
        # inp(taskname = 'clean')
        os.system('rm -rf {}*'.format(imname))
        try:
            clean(vis=vis,
                  imagename=imname,
                  outlierfile=outlierfile,
                  field=field,
                  spw=spw,
                  selectdata=selectdata,
                  timerange=timerange,
                  uvrange=uvrange,
                  antenna=antenna,
                  scan=scan,
                  observation=str(observation),
                  intent=intent,
                  mode=mode,
                  resmooth=resmooth,
                  gridmode=gridmode,
                  wprojplanes=wprojplanes,
                  facets=facets,
                  cfcache=cfcache,
                  rotpainc=rotpainc,
                  painc=painc,
                  psterm=psterm,
                  aterm=aterm,
                  mterm=mterm,
                  wbawp=wbawp,
                  conjbeams=conjbeams,
                  epjtable=epjtable,
                  interpolation=interpolation,
                  niter=niter,
                  gain=gain,
                  threshold=threshold,
                  psfmode=psfmode,
                  imagermode=imagermode,
                  ftmachine=ftmachine,
                  mosweight=mosweight,
                  scaletype=scaletype,
                  multiscale=multiscale,
                  negcomponent=negcomponent,
                  smallscalebias=smallscalebias,
                  interactive=interactive,
                  mask=mask,
                  nchan=nchan,
                  start=start,
                  width=width,
                  outframe=outframe,
                  veltype=veltype,
                  imsize=imsize,
                  cell=cell,
                  phasecenter=phasecenter,
                  restfreq=restfreq,
                  stokes=stokes,
                  weighting=weighting,
                  robust=robust,
                  uvtaper=uvtaper,
                  outertaper=outertaper,
                  innertaper=innertaper,
                  modelimage=modelimage,
                  restoringbeam=restoringbeam,
                  pbcor=pbcor,
                  minpb=minpb,
                  usescratch=usescratch,
                  noise=noise,
                  npixels=npixels,
                  npercycle=npercycle,
                  cyclefactor=cyclefactor,
                  cyclespeedup=cyclespeedup,
                  nterms=nterms,
                  reffreq=reffreq,
                  chaniter=chaniter,
                  flatnoise=flatnoise,
                  allowchunk=False)
            clnjunks = ['.flux', '.mask', '.model', '.psf', '.residual']
            for clnjunk in clnjunks:
                if os.path.exists(imname + clnjunk):
                    shutil.rmtree(imname + clnjunk)
        except:
            print('error in cleaning image: ' + btstr)
            return [False, btstr, etstr, '']
    else:
        print imname + ' exists. Clean task aborted.'

    if doreg and not os.path.isfile(imname + '.fits'):
        #ephem.keys()
        #msinfo.keys()
        try:
            # check if ephemfile and msinfofile exist
            if not ephem:
                print(
                    "ephemeris info does not exist, querying from JPL Horizons on the fly"
                )
                ephem = hf.read_horizons(vis)
            if not msinfo:
                print("ms info not provided, generating one on the fly")
                msinfo = hf.read_msinfo(vis)
            hf.imreg(vis=vis,
                     ephem=ephem,
                     msinfo=msinfo,
                     timerange=timerange,
                     reftime=reftime,
                     imagefile=imname + '.image',
                     fitsfile=imname + '.fits',
                     toTb=toTb,
                     scl100=False,
                     usephacenter=usephacenter)
            if os.path.exists(imname + '.fits'):
                shutil.rmtree(imname + '.image')
                return [True, btstr, etstr, imname + '.fits']
            else:
                return [False, btstr, etstr, '']
        except:
            print('error in registering image: ' + btstr)
            return [False, btstr, etstr, imname + '.image']
    else:
        if os.path.exists(imname + '.image'):
            return [True, btstr, etstr, imname + '.image']
        else:
            return [False, btstr, etstr, '']
Beispiel #7
0
def svplot(vis, timerange=None, spw='', workdir='./', specfile=None, bl=None, uvrange=None,
           stokes='RR,LL', dmin=None, dmax=None,
           goestime=None, reftime=None, 
           xycen=None, fov=[500.,500.], xyrange=None, restoringbeam=[''], robust=0.0,
           niter=500, imsize=[512], cell=['5.0arcsec'],interactive=False, 
           usemsphacenter=True, imagefile=None, fitsfile=None, plotaia=True,
           aiawave=171, aiafits=None, savefig=False, mkmovie=False, overwrite=True, ncpu=10, twidth=1, verbose=True):
    '''
    Required inputs:
            vis: calibrated CASA measurement set
    Important optional inputs:
            timerange: timerange for clean. Standard CASA time selection format. 
                       If not provided, use the entire range (*BE CAREFUL, COULD BE VERY SLOW*)
            spw: spectral window selection following the CASA syntax. 
                 Examples: spw='1:2~60' (spw id 1, channel range 2-60); spw='*:1.2~1.3GHz' (selects all channels within 1.2-1.3 GHz; note the *) 
            specfile: supply dynamic spectrum save file (from suncasa.utils.dspec2.get_dspec()). Otherwise
                      generate a median dynamic spectrum on the fly
    Optional inputs:
            bl: baseline to generate dynamic spectrum
            uvrange: uvrange to select baselines for generating dynamic spectrum 
            stokes: polarization of the clean image, can be 'RR,LL' or 'I,V'
            dmin,dmax: color bar parameter
            goestime: goes plot time, example ['2016/02/18 18:00:00','2016/02/18 23:00:00']
            rhessisav: rhessi savefile
            reftime: reftime for the image
            xycen: center of the image in helioprojective coordinates (HPLN/HPLT), in arcseconds. Example: [900, -150.]
            fov: field of view in arcsecs. Example: [500., 500.]
            xyrange: field of view in solar XY coordinates. Format: [[x1,x2],[y1,y2]]. Example: [[900., 1200.],[0,300]] 
                     ***NOTE: THIS PARAMETER OVERWRITES XYCEN AND FOV***
            aiawave: wave length of aia file in a
            imagefile: if imagefile provided, use it. Otherwise do clean and generate a new one.
            fitsfile: if fitsfile provided, use it. Otherwise generate a new one
            savefig: whether to save the figure
    Example:

    '''

    if xycen:
        xc, yc = xycen
        xlen, ylen = fov
        if parse_version(sunpy.__version__)>parse_version('0.8.0'):
            xyrange = [[xc - xlen / 2.0, yc - ylen / 2.0], [xc + xlen / 2.0, yc + ylen / 2.0]]
        else:
            xyrange = [[xc - xlen / 2.0, xc + xlen / 2.0], [yc - ylen / 2.0, yc + ylen / 2.0]]
    stokes_allowed = ['RR,LL', 'I,V', 'RRLL', 'IV']
    if not stokes in stokes_allowed:
        print 'wrong stokes parameter ' + str(stokes) + '. Allowed values are ' + ', '.join(stokes_allowed)
        return -1
    if stokes == 'RRLL':
        stokes = 'RR,LL'
    if stokes == 'IV':
        stokes = 'I,V'

    if vis[-1] == '/':
        vis = vis[:-1]
    if not os.path.exists(vis):
        print 'input measurement not exist'
        return -1
    if aiafits is None:
        aiafits = ''
    # split the data
    # generating dynamic spectrum
    if not os.path.exists(workdir):
        os.makedirs(workdir)
    if specfile:
        try:
            specdata = np.load(specfile)
        except:
            print('Provided dynamic spectrum file not numpy npz. Generating one from the visibility data')
            specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz')
            dspec_external(vis, workdir=workdir, specfile=specfile)
            specdata = np.load(specfile)  # specdata = ds.get_dspec(vis, domedian=True, verbose=True)
    else:
        print('Dynamic spectrum file not provided; Generating one from the visibility data')
        # specdata = ds.get_dspec(vis, domedian=True, verbose=True)
        specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz')
        dspec_external(vis, workdir=workdir, specfile=specfile)
        specdata = np.load(specfile)

    tb.open(vis)
    starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd')
    tb.close()
    datstr = starttim.iso[:10]

    if timerange is None or timerange == '':
        starttim1 = starttim
        endtim1 = endtim
        timerange = '{0}~{1}'.format(starttim.iso.replace('-', '/').replace(' ', '/'), endtim.iso.replace('-', '/').replace(' ', '/'))
    else:
        try:
            (tstart, tend) = timerange.split('~')
            if tstart[2] == ':':
                starttim1 = Time(datstr + 'T' + tstart)
                endtim1 = Time(datstr + 'T' + tend)
                timerange = '{0}/{1}~{0}/{2}'.format(datstr.replace('-', '/'), tstart, tend)
            else:
                starttim1 = Time(qa.quantity(tstart, 'd')['value'], format='mjd')
                endtim1 = Time(qa.quantity(tend, 'd')['value'], format='mjd')
        except ValueError:
            print "keyword 'timerange' in wrong format"
    midtime_mjd = (starttim1.mjd + endtim1.mjd) / 2.

    if vis.endswith('/'):
        vis = vis[:-1]
    visname = os.path.basename(vis)
    bt = starttim1.plot_date
    et = endtim1.plot_date

    # find out min and max frequency for plotting in dynamic spectrum
    ms.open(vis)
    metadata = ms.metadata()
    observatory = metadata.observatorynames()[0]
    spwInfo = ms.getspectralwindowinfo()
    nspw = len(spwInfo)
    if not spw:
        spw = '0~' + str(nspw - 1)
    staql = {'timerange': timerange, 'spw': spw}
    if ms.msselect(staql, onlyparse=True):
        ndx = ms.msselectedindices()
        chan_sel = ndx['channel']
        nspw = chan_sel.shape[0]
        bspw = chan_sel[0, 0]
        bchan = chan_sel[0, 1]
        espw = chan_sel[-1, 0]
        echan = chan_sel[-1, 2]
        bfreq = spwInfo[str(bspw)]['Chan1Freq'] + spwInfo[str(bspw)]['ChanWidth'] * bchan
        efreq = spwInfo[str(espw)]['Chan1Freq'] + spwInfo[str(espw)]['ChanWidth'] * echan
        bfreqghz = bfreq / 1e9
        efreqghz = efreq / 1e9
        if verbose:
            print 'selected timerange {}'.format(timerange)
            print 'selected frequency range {0:6.3f} to {1:6.3f} GHz'.format(bfreqghz, efreqghz)
    else:
        print "spw or timerange selection failed. Aborting..."
        ms.close()
        return -1
    ms.close()

    if observatory == 'EOVSA':
        print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV'
        stokes = 'I,V'

    if mkmovie:
        plt.ioff()
        # fig = plt.figure(figsize=(12, 7.5), dpi=100)
        if fitsfile:
            pass
        else:
            if not imagefile:
                # from ptclean_cli import ptclean_cli as ptclean
                eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd'))
                if observatory == 'EOVSA' or (not usemsphacenter):
                    phasecenter = ''
                else:
                    phasecenter = 'J2000 ' + str(eph['ra'][0])[:15] + 'rad ' + str(eph['dec'][0])[:15] + 'rad'
                print 'use phasecenter: ' + phasecenter
                qlookfitsdir = os.path.join(workdir, 'qlookfits/')
                qlookfigdir = os.path.join(workdir, 'qlookimgs/')
                imresfile = os.path.join(qlookfitsdir, '{}.imres.npz'.format(os.path.basename(vis)))
                if overwrite:
                    imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes,
                                           c_external=True)
                else:
                    if os.path.exists(imresfile):
                        imres = np.load(imresfile)
                        imres = imres['imres'].item()
                    else:
                        print('Image results file not found; Creating new images.')
                        imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes,
                                               c_external=True)
                if not os.path.exists(qlookfigdir):
                    os.makedirs(qlookfigdir)
                plt_qlook_image(imres, figdir=qlookfigdir, specdata=specdata, verbose=True, stokes=stokes, fov=xyrange)

    else:
        spec = specdata['spec']
        (npol, nbl, nfreq, ntim) = spec.shape
        tidx = range(ntim)
        fidx = range(nfreq)
        tim = specdata['tim']
        freq = specdata['freq']
        freqghz = freq / 1e9
        spec_tim = Time(specdata['tim'] / 3600. / 24., format='mjd')
        timstrr = spec_tim.plot_date
        plt.ion()
        fig = plt.figure(figsize=(12, 7), dpi=100)
        gs1 = gridspec.GridSpec(3, 1)
        gs1.update(left=0.08, right=0.32, wspace=0.05)
        gs2 = gridspec.GridSpec(2, 2)
        gs2.update(left=0.38, right=0.98, hspace=0.02, wspace=0.02)

        spec_1 = np.absolute(spec[0, 0, :, :])
        spec_2 = np.absolute(spec[1, 0, :, :])
        if observatory == 'EVLA':
            # circular feeds
            polstr = ['RR', 'LL']
        if observatory == 'EOVSA' or observatory == 'ALMA':
            # linear feeds
            polstr = ['XX', 'YY']

        print 'plot the dynamic spectrum in pol ' + ' & '.join(polstr)
        ax1 = plt.subplot(gs1[0])
        ax1.pcolormesh(timstrr, freqghz, spec_1, cmap='jet', vmin=dmin, vmax=dmax)
        ax1.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]])
        ax1.xaxis_date()
        ax1.xaxis.set_major_formatter(DateFormatter("%H:%M:%S"))
        # ax1.set_xticklabels(['']*10)
        ax1.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]])
        ax1.set_ylabel('Frequency (GHz)', fontsize=10)
        ax1.set_title(observatory + ' ' + datstr + ' ' + polstr[0] + ' & ' + polstr[1], fontsize=12)
        ax1.set_autoscale_on(False)
        ax1.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False))
        ax1.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12)
        for tick in ax1.get_xticklabels():
            tick.set_fontsize(8)
        for tick in ax1.get_yticklabels():
            tick.set_fontsize(8)
        ax2 = plt.subplot(gs1[1])
        ax2.pcolormesh(timstrr, freqghz, spec_2, cmap='jet', vmin=dmin, vmax=dmax)
        ax2.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]])
        ax2.xaxis_date()
        ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S"))
        ax2.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]])
        ax2.set_ylabel('Frequency (GHz)', fontsize=10)
        for tick in ax2.get_xticklabels():
            tick.set_fontsize(8)
        for tick in ax2.get_yticklabels():
            tick.set_fontsize(8)
        ax2.set_autoscale_on(False)
        ax2.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False))
        ax2.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12)

        # Second part: GOES plot
        if goestime:
            btgoes = goestime[0]
            etgoes = goestime[1]
        else:
            datstrg = datstr.replace('-', '/')
            btgoes = datstrg + ' ' + qa.time(qa.quantity(tim[0] - 1800, 's'), form='clean', prec=9)[0]
            etgoes = datstrg + ' ' + qa.time(qa.quantity(tim[tidx[-1] - 1] + 1800, 's'), form='clean', prec=9)[0]
        if verbose:
            print 'Acquire GOES soft X-ray data in from ' + btgoes + ' to ' + etgoes

        ax3 = plt.subplot(gs1[2])

        try:
            from sunpy import lightcurve as lc
            from sunpy.time import TimeRange
            goest = lc.GOESLightCurve.create(TimeRange(btgoes, etgoes))
        except:
            goesscript = os.path.join(workdir, 'goes.py')
            goesdatafile = os.path.join(workdir, 'goes.dat')
            os.system('rm -rf {}'.format(goesscript))
            fi = open(goesscript, 'wb')
            fi.write('import os \n')
            fi.write('from sunpy.time import TimeRange \n')
            fi.write('from sunpy import lightcurve as lc \n')
            fi.write('import pickle \n')
            fi.write('goesplottim = TimeRange("{0}", "{1}") \n'.format(btgoes, etgoes))
            fi.write('goes = lc.GOESLightCurve.create(goesplottim) \n')
            fi.write('fi2 = open("{}", "wb") \n'.format(goesdatafile))
            fi.write('pickle.dump(goes, fi2) \n')
            fi.write('fi2.close()')
            fi.close()

            try:
                os.system('python {}'.format(goesscript))
                os.system('rm -rf {}'.format(goesscript))
            except NameError:
                print "Bad input names"
            except ValueError:
                print "Bad input values"
            except:
                print "Unexpected error:", sys.exc_info()[0]
                print "Error in generating GOES light curves. Proceed without GOES..."

            if os.path.exists(goesdatafile):
                fi1 = file(goesdatafile, 'rb')
                goest = pickle.load(fi1)
                fi1.close()

        try:
            dates = mpl.dates.date2num(parse_time(goest.data.index))
            goesdif = np.diff(goest.data['xrsb'])
            gmax = np.nanmax(goesdif)
            gmin = np.nanmin(goesdif)
            ran = gmax - gmin
            db = 2.8 / ran
            goesdifp = goesdif * db + gmin + (-6)
            ax3.plot_date(dates, np.log10(goest.data['xrsb']), '-', label='1.0--8.0 $\AA$', color='red', lw=2)
            ax3.plot_date(dates[0:-1], goesdifp, '-', label='derivate', color='blue', lw=0.4)

            ax3.set_ylim([-7, -3])
            ax3.set_yticks([-7, -6, -5, -4, -3])
            ax3.set_yticklabels([r'$10^{-7}$', r'$10^{-6}$', r'$10^{-5}$', r'$10^{-4}$', r'$10^{-3}$'])
            ax3.set_title('Goes Soft X-ray', fontsize=12)
            ax3.set_ylabel('Watts m$^{-2}$')
            ax3.set_xlabel(datetime.datetime.isoformat(goest.data.index[0])[0:10])
            ax3.axvspan(dates[899], dates[dates.size - 899], alpha=0.2)

            ax2 = ax3.twinx()
            # ax2.set_yscale("log")
            ax2.set_ylim([-7, -3])
            ax2.set_yticks([-7, -6, -5, -4, -3])
            ax2.set_yticklabels(['B', 'C', 'M', 'X', ''])

            ax3.yaxis.grid(True, 'major')
            ax3.xaxis.grid(False, 'major')
            ax3.legend(prop={'size': 6})

            formatter = mpl.dates.DateFormatter('%H:%M')
            ax3.xaxis.set_major_formatter(formatter)

            ax3.fmt_xdata = mpl.dates.DateFormatter('%H:%M')
        except:
            print 'Error in downloading GOES soft X-ray data. Proceeding with out soft X-ray plot.'

        # third part
        # start to download the fits files
        if plotaia:
            if not aiafits:
                newlist = []
                items = glob.glob('*.fits')
                for names in items:
                    str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[
                                                                                                            11:13] + '_' + starttim1.iso[14:16]
                    str2 = str(aiawave)
                    if names.endswith(".fits"):
                        if names.find(str1) != -1 and names.find(str2) != -1:
                            newlist.append(names)
                    newlist.append('0')
                if newlist and os.path.exists(newlist[0]):
                    aiafits = newlist[0]
                else:
                    print 'downloading the aiafits file'
                    wave1 = aiawave - 3
                    wave2 = aiawave + 3
                    t1 = Time(starttim1.mjd - 0.02 / 24., format='mjd')
                    t2 = Time(endtim1.mjd + 0.02 / 24., format='mjd')
                    try:
                        from sunpy.net import vso
                        client = vso.VSOClient()
                        qr = client.query(vso.attrs.Time(t1.iso, t2.iso), vso.attrs.Instrument('aia'), vso.attrs.Wave(wave1 * u.AA, wave2 * u.AA))
                        res = client.get(qr, path='{file}')
                    except:
                        SdoDownloadscript = os.path.join(workdir, 'SdoDownload.py')
                        os.system('rm -rf {}'.format(SdoDownloadscript))
                        fi = open(SdoDownloadscript, 'wb')
                        fi.write('from sunpy.net import vso \n')
                        fi.write('from astropy import units as u \n')
                        fi.write('client = vso.VSOClient() \n')
                        fi.write(
                            "qr = client.query(vso.attrs.Time('{0}', '{1}'), vso.attrs.Instrument('aia'), vso.attrs.Wave({2} * u.AA, {3} * u.AA)) \n".format(
                                t1.iso, t2.iso, wave1, wave2))
                        fi.write("res = client.get(qr, path='{file}') \n")
                        fi.close()

                        try:
                            os.system('python {}'.format(SdoDownloadscript))
                        except NameError:
                            print "Bad input names"
                        except ValueError:
                            print "Bad input values"
                        except:
                            print "Unexpected error:", sys.exc_info()[0]
                            print "Error in Downloading AIA fits files. Proceed without AIA..."

            # Here something is needed to check whether it has finished downloading the fits files or not

            if not aiafits:
                newlist = []
                items = glob.glob('*.fits')
                for nm in items:
                    str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[
                                                                                                            11:13] + '_' + starttim1.iso[14:16]
                    str2 = str(aiawave)
                    if nm.find(str1) != -1 and nm.find(str2) != -1:
                        newlist.append(nm)
                if newlist:
                    aiafits = newlist[0]
                    print 'AIA fits ' + aiafits + ' selected'
                else:
                    print 'no AIA fits files found. Proceed without AIA'

            try:
                aiamap = smap.Map(aiafits)
            except:
                print 'error in reading aiafits. Proceed without AIA'

        # RCP or I
        ax4 = plt.subplot(gs2[0, 0])
        ax5 = plt.subplot(gs2[1, 0])
        # LCP or V
        ax6 = plt.subplot(gs2[0, 1])
        ax7 = plt.subplot(gs2[1, 1])

        if fitsfile:
            pass
        else:
            if not imagefile:
                eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd'))
                if observatory == 'EOVSA' or (not usemsphacenter):
                    print 'This is EOVSA data'
                    # use RA and DEC from FIELD ID 0
                    tb.open(vis+'/FIELD')
                    phadir = tb.getcol('PHASE_DIR').flatten()
                    tb.close()
                    ra0 = phadir[0]
                    dec0 = phadir[1]
                    if stokes == 'RRLL' or stokes == 'RR,LL':
                        print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV'
                        stokes = 'I,V'
                else:
                    ra0 = eph['ra'][0]
                    dec0 = eph['dec'][0]

                if not xycen:
                    # use solar disk center as default
                    phasecenter = 'J2000 ' + str(ra0) + 'rad ' + str(dec0) + 'rad'
                else:
                    x0 = np.radians(xycen[0]/3600.)
                    y0 = np.radians(xycen[1]/3600.)
                    p0 = np.radians(eph['p0'][0]) # p angle in radians 
                    raoff = -((x0) * np.cos(p0) - y0 * np.sin(p0))/np.cos(eph['dec'][0])
                    decoff = (x0) * np.sin(p0) + y0 * np.cos(p0)
                    newra = ra0 + raoff
                    newdec = dec0 + decoff
                    phasecenter = 'J2000 ' + str(newra) + 'rad ' + str(newdec) + 'rad'

                imagename = os.path.join(workdir, visname + '.outim')
                if os.path.exists(imagename + '.image') or os.path.exists(imagename + '.flux'):
                    os.system('rm -rf ' + imagename + '.*')
                sto = stokes.replace(',', '')
                print 'do clean for ' + timerange + ' in spw ' + spw + ' stokes ' + sto
                print 'Original phasecenter: '+ str(ra0) + str(dec0)
                print 'use phasecenter: ' + phasecenter
                clean(vis=vis, imagename=imagename, selectdata=True, spw=spw, timerange=timerange, stokes=sto,
                      niter=niter, interactive=interactive, npercycle=50, imsize=imsize, cell=cell, restoringbeam=restoringbeam,
                      weighting='briggs', robust=robust, phasecenter=phasecenter)
                os.system('rm -rf ' + imagename + '.psf')
                os.system('rm -rf ' + imagename + '.flux')
                os.system('rm -rf ' + imagename + '.model')
                os.system('rm -rf ' + imagename + '.mask')
                os.system('rm -rf ' + imagename + '.residual')
                imagefile = imagename + '.image'
            fitsfile = imagefile + '.fits'
            hf.imreg(vis=vis, ephem=eph, imagefile=imagefile, timerange=timerange, reftime=reftime, fitsfile=fitsfile, verbose=True, overwrite=True)
        print 'fits file ' + fitsfile + ' selected'
        ax4.cla()
        ax5.cla()
        ax6.cla()
        ax7.cla()

        rfits = fitsfile
        try:
            hdulist = fits.open(rfits)
            hdu = hdulist[0]
            (npol, nf, nx, ny) = hdu.data.shape
            rmap = smap.Map(hdu.data[0, 0, :, :], hdu.header)
        except:
            print 'radio fits file not recognized by sunpy.map. Aborting...'
            return -1
        if npol > 1:
            rmap1 = smap.Map(hdu.data[0, 0, :, :], hdu.header)
            rmap2 = smap.Map(hdu.data[1, 0, :, :], hdu.header)

        XX, YY = np.meshgrid(np.arange(rmap.data.shape[1]), np.arange(rmap.data.shape[0]))
        try:
            rmapx, rmapy = rmap.pixel_to_data(XX * u.pix, YY * u.pix)
        except:
            rmapxy = rmap.pixel_to_data(XX * u.pix, YY * u.pix)
            rmapx = rmapxy.Tx
            rmapy = rmapxy.Ty

        if not xyrange:
            if xycen:
                x0 = xycen[0] * u.arcsec
                y0 = xycen[1] * u.arcsec
            if not xycen:
                row, col = rmap1.data.shape
                positon = np.nanargmax(rmap1.data)
                m, n = divmod(positon, col)
                x0 = rmap1.xrange[0] + rmap1.scale[1] * (n + 0.5) * u.pix
                y0 = rmap1.yrange[0] + rmap1.scale[0] * (m + 0.5) * u.pix
            if len(fov) == 1:
                fov=[fov]*2
            sz_x = fov[0] * u.arcsec
            sz_y = fov[1] * u.arcsec
            x1 = x0 - sz_x/2.
            x2 = x0 + sz_x/2.
            y1 = y0 - sz_y/2.
            y2 = y0 + sz_y/2.
            xyrange = [[x1.value, x2.value], [y1.value, y2.value]]
        else:
            sz_x = xyrange[0][1] - xyrange[0][0]
            sz_y = xyrange[1][1] - xyrange[1][0]


        clevels1 = np.linspace(0.2, 0.9, 5)
        if stokes.split(',')[1] == 'V':
            clevels2 = np.array([0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8])
        else:
            clevels2 = np.linspace(0.2, 0.9, 5)
        if 'aiamap' in vars():
            aiamap.plot_settings['cmap'] = plt.get_cmap('binary')
            if rmap:
                title = 'AIA {0:.0f} + {1} {2:6.3f} GHz'.format(aiamap.wavelength.value, observatory, (bfreqghz + efreqghz) / 2.0)
            else:
                title = 'AIA {0:.0f}'.format(aiamap.wavelength.value)
            aiamap.plot(axes=ax4)
            ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12)
            aiamap.draw_limb()
            aiamap.draw_grid()
            aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            aiamap.plot(axes=ax6)
            ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12)
            aiamap.draw_limb()
            aiamap.draw_grid()
            aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            if rmap:
                ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=clevels1 * np.nanmax(rmap1.data), cmap=cm.jet)
                ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=clevels2 * np.nanmax(rmap2.data), cmap=cm.RdBu)
            ax4.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'),
                     verticalalignment='bottom', horizontalalignment='left', transform=ax4.transAxes, color='k',
                     fontsize=10)
            ax6.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'),
                     verticalalignment='bottom', horizontalalignment='left', transform=ax6.transAxes, color='k',
                     fontsize=10)
        else:
            title = '{0} {1:6.3f} GHz'.format(observatory, (bfreqghz + efreqghz) / 2.0)
            rmap1.plot(axes=ax4, cmap=cm.jet)
            ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12)
            rmap1.draw_limb()
            rmap1.draw_grid()
            rmap1.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            rmap2.plot(axes=ax6, cmap=cm.RdBu)
            ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12)
            rmap2.draw_limb()
            rmap2.draw_grid()
            # ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap1.data),
            #            cmap=cm.gray)
            # ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap2.data),
            #            cmap=cm.gray)
            rmap2.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)  
        ax4.set_xlim(-1200, 1200)
        ax4.set_ylim(-1200, 1200)
        ax6.set_xlim(-1200, 1200)
        ax6.set_ylim(-1200, 1200)

        try:
            subrmap1 = rmap1.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
            subrmap2 = rmap2.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
        except:
            bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=rmap1.coordinate_frame)
            tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=rmap1.coordinate_frame)
            subrmap1 = rmap1.submap(bl, tr)
            subrmap2 = rmap2.submap(bl, tr)

        XX, YY = np.meshgrid(np.arange(subrmap1.data.shape[1]), np.arange(subrmap1.data.shape[0]))
        try:
            subrmapx, subrmapy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix)
        except:
            subrmapxy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix)
            subrmapx = subrmapxy.Tx
            subrmapy = subrmapxy.Ty

        if 'aiamap' in vars():
            try:
                subaiamap = aiamap.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
            except:
                bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=aiamap.coordinate_frame)
                tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=aiamap.coordinate_frame)
                subaiamap = aiamap.submap(bl, tr)

            subaiamap.plot(axes=ax5, title='')
            subaiamap.draw_limb()
            subaiamap.draw_grid()
            subaiamap.plot(axes=ax7, title='')
            subaiamap.draw_limb()
            subaiamap.draw_grid()
            ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.jet)
            ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, levels=clevels2 * np.nanmax(subrmap2.data),
                        cmap=cm.RdBu)  # subaiamap.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)
        else:
            subrmap1.plot(axes=ax5, cmap=cm.jet, title='')
            subrmap1.draw_limb()
            subrmap1.draw_grid()
            subrmap2.plot(axes=ax7, cmap=cm.RdBu, title='')
            subrmap2.draw_limb()
            subrmap2.draw_grid()  # ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data,  #            levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.gray)  # ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data,  #            levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.gray)  # subrmap1.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)  # subrmap2.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)
        ax5.set_xlim(xyrange[0])
        ax5.set_ylim(xyrange[1])
        ax5.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom',
                 horizontalalignment='left', transform=ax5.transAxes, color='k', fontsize=10)
        ax7.set_xlim(xyrange[0])
        ax7.set_ylim(xyrange[1])
        ax7.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom',
                 horizontalalignment='left', transform=ax7.transAxes, color='k', fontsize=10)

        fig.show()
Beispiel #8
0
def mk_qlook_image(trange, doimport=False, docalib=False, ncpu=10, twidth=12, stokes=None, antenna='0~12', 
        #imagedir=None, spws=['1~3','4~6','7~9','10~13','14~18','19~28'],verbose=False):
        imagedir=None, spws=['1~5','6~10','11~15','16~25'], toTb=True, overwrite=True, 
        doslfcal=False, verbose=False):

        
    ''' 
       trange: can be 1) a single Time() object: use the entire day
                      2) a range of Time(), e.g., Time(['2017-08-01 00:00','2017-08-01 23:00'])
                      3) a single or a list of UDBms file(s)
                      4) None -- use current date Time.now()
    '''
    if type(trange) == Time:
        mslist = trange2ms(trange=trange, doimport=doimport)
        vis = mslist['ms']
        tsts = [l.to_datetime() for l in mslist['tstlist']]
        subdir = [tst.strftime("%Y/%m/%d/") for tst in tsts] 
    if type(trange) == str:
        try:
            date = Time(trange)
            mslist = trange2ms(trange=trange, doimport=doimport)          
            vis = mslist['ms']
        except:
            vis = [trange]
        subdir = ['/']

    for idx, f in enumerate(vis):
        if f[-1] == '/':
            vis[idx] = f[:-1]
    if not stokes:
        stokes = 'XX'
     
    if not imagedir:
        imagedir='./'
    imres = {'Succeeded': [], 'BeginTime': [], 'EndTime': [], 'ImageName': [], 'Spw': [], 'Vis': []}
    for n, msfile in enumerate(vis):
        msfilebs=os.path.basename(msfile)
        imdir = imagedir + subdir[n]
        if not os.path.exists(imdir):
            os.makedirs(imdir)
        if doslfcal:
            slfcalms = './'+msfilebs+'.xx'
            split(msfile,outputvis=slfcalms,datacolumn='corrected',correlation='XX')
        for spw in spws:
            spwran = [s.zfill(2) for s in spw.split('~')]
            freqran = [int(s)*0.5+2.9 for s in spw.split('~')]
            cfreq=np.mean(freqran)
            bmsz=max(150./cfreq,20.)
            uvrange='<10klambda'
            if doslfcal:
                slfcal_img = './'+msfilebs+'.slf.spw'+spw.replace('~','-')+'.slfimg'
                slfcal_tb = './'+msfilebs+'.slf.spw'+spw.replace('~','-')+'.slftb'
                try:
                    clean(vis=slfcalms,
                            antenna=antenna,
                            imagename=slfcal_img,
                            spw=spw,
                            mode='mfs',
                            timerange='',
                            imagermode='csclean',
                            psfmode='clark',
                            imsize=[512,512],
                            cell=['5arcsec'],
                            niter=100,
                            gain=0.05,
                            stokes='I',
                            weighting='natural',
                            restoringbeam=[str(bmsz)+'arcsec'],
                            pbcor=False,
                            interactive=False,
                            usescratch=True)
                except:
                    print 'error in cleaning spw: '+spw
                    break
                gaincal(vis=slfcalms, refant='0',antenna=antenna,caltable=slfcal_tb,spw=spw, uvrange='',\
                        gaintable=[],selectdata=True,timerange='',solint='600s',gaintype='G',calmode='p',\
                        combine='',minblperant=3,minsnr=2,append=False)
                if not os.path.exists(slfcal_tb):
                    print 'No solution found in spw: '+spw
                    break
                else:
                    clearcal(slfcalms)
                    delmod(slfcalms)
                    applycal(vis=slfcalms,gaintable=[slfcal_tb],spw=spw,selectdata=True,\
                             antenna=antenna,interp='nearest',flagbackup=False,applymode='calonly',calwt=False)
                    msfile=slfcalms

            if cfreq < 10.: 
                imsize=512
                cell=['5arcsec']
            else:
                imsize=1024
                cell=['2.5arcsec']
            if len(spwran) == 2:
                spwstr = spwran[0]+'~'+spwran[1]
            else:
                spwstr = spwran[0]

            restoringbeam=['{0:.1f}arcsec'.format(bmsz)]
            imagesuffix='.spw'+spwstr.replace('~','-')
            if cfreq > 10.:
                antenna=antenna+';!0&1;!0&2' #deselect the shortest baselines
            res=ptclean(vis=msfile, imageprefix=imdir, imagesuffix=imagesuffix, twidth=twidth, uvrange=uvrange, 
                        spw=spw, ncpu=ncpu, niter=1000, gain=0.05, antenna=antenna,imsize=imsize, cell=cell, 
                        stokes=stokes, doreg=True, usephacenter=False, overwrite=overwrite, toTb=toTb, restoringbeam=restoringbeam,
                        uvtaper=True,outertaper=['30arcsec'])

            if res:
                imres['Succeeded'] += res['Succeeded']
                imres['BeginTime'] += res['BeginTime']
                imres['EndTime'] += res['EndTime']
                imres['ImageName'] += res['ImageName']
                imres['Spw'] += [spwstr]*len(res['ImageName'])
                imres['Vis'] += [msfile]*len(res['ImageName'])
            else:
                return None

    #save it for debugging purposes
    np.savez('imres.npz',imres=imres)

    return imres