def do_clean(settings_file=None): params = get_params(configfile=settings_file, section='clean') print params.imagename clean(vis=params.vis, imagename=params.imagename, mode=params.mode, niter=int(params.niter), threshold=params.threshold, psfmode=params.psfmode, imagermode=params.imagermode, ftmachine=params.ftmachine, imsize=int(params.imsize), cell=params.cell, stokes=params.stokes, weighting=params.weighting, robust=float(params.robust)) im = params.imagename + '.image' exportfits(imagename=im, fitsimage=im + '.fits', overwrite=True) im = params.imagename + '.psf' exportfits(imagename=im, fitsimage=im + '.fits', overwrite=True)
def mk_qlook_image(trange, doimport=False, docalib=False, ncpu=10, twidth=12, stokes=None, antenna='0~12', lowcutoff_freq=3.7, imagedir=None, spws=['1~5', '6~10', '11~15', '16~25'], toTb=True, overwrite=True, doslfcal=False, verbose=False): ''' trange: can be 1) a single Time() object: use the entire day 2) a range of Time(), e.g., Time(['2017-08-01 00:00','2017-08-01 23:00']) 3) a single or a list of UDBms file(s) 4) None -- use current date Time.now() ''' antenna0 = antenna if type(trange) == Time: mslist = trange2ms(trange=trange, doimport=doimport) vis = mslist['ms'] tsts = [l.to_datetime() for l in mslist['tstlist']] if type(trange) == str: try: date = Time(trange) mslist = trange2ms(trange=trange, doimport=doimport) vis = mslist['ms'] tsts = [l.to_datetime() for l in mslist['tstlist']] except: vis = [trange] tsts = [] for v in vis: tb.open(v + '/OBSERVATION') tsts.append( Time(tb.getcell('TIME_RANGE')[0] / 24 / 3600, format='mjd').datetime) tb.close() subdir = [tst.strftime("%Y/%m/%d/") for tst in tsts] for idx, f in enumerate(vis): if f[-1] == '/': vis[idx] = f[:-1] if not stokes: stokes = 'XX' if not imagedir: imagedir = './' imres = { 'Succeeded': [], 'BeginTime': [], 'EndTime': [], 'ImageName': [], 'Spw': [], 'Vis': [], 'Synoptic': { 'Succeeded': [], 'BeginTime': [], 'EndTime': [], 'ImageName': [], 'Spw': [], 'Vis': [] } } for n, msfile in enumerate(vis): msfilebs = os.path.basename(msfile) imdir = imagedir + subdir[n] if not os.path.exists(imdir): os.makedirs(imdir) if doslfcal: slfcalms = './' + msfilebs + '.xx' split(msfile, outputvis=slfcalms, datacolumn='corrected', correlation='XX') cfreqs = getspwfreq(msfile) for spw in spws: antenna = antenna0 if spw == '': continue spwran = [s.zfill(2) for s in spw.split('~')] freqran = [cfreqs[int(s)] for s in spw.split('~')] cfreq = np.mean(freqran) bmsz = max(150. / cfreq, 20.) uvrange = '<10klambda' if doslfcal: slfcal_img = './' + msfilebs + '.slf.spw' + spw.replace( '~', '-') + '.slfimg' slfcal_tb = './' + msfilebs + '.slf.spw' + spw.replace( '~', '-') + '.slftb' try: clean(vis=slfcalms, antenna=antenna, imagename=slfcal_img, spw=spw, mode='mfs', timerange='', imagermode='csclean', psfmode='clark', imsize=[512, 512], cell=['5arcsec'], niter=100, gain=0.05, stokes='I', weighting='natural', restoringbeam=[str(bmsz) + 'arcsec'], pbcor=False, interactive=False, usescratch=True) except: print('error in cleaning spw: ' + spw) break gaincal(vis=slfcalms, refant='0', antenna=antenna, caltable=slfcal_tb, spw=spw, uvrange='', gaintable=[], selectdata=True, timerange='', solint='600s', gaintype='G', calmode='p', combine='', minblperant=3, minsnr=2, append=False) if not os.path.exists(slfcal_tb): print('No solution found in spw: ' + spw) break else: clearcal(slfcalms) delmod(slfcalms) applycal(vis=slfcalms, gaintable=[slfcal_tb], spw=spw, selectdata=True, antenna=antenna, interp='nearest', flagbackup=False, applymode='calonly', calwt=False) msfile = slfcalms imsize = 512 cell = ['5arcsec'] if len(spwran) == 2: spwstr = spwran[0] + '~' + spwran[1] else: spwstr = spwran[0] restoringbeam = ['{0:.1f}arcsec'.format(bmsz)] imagesuffix = '.spw' + spwstr.replace('~', '-') if cfreq > 10.: antenna = antenna + ';!0&1;!0&2' # deselect the shortest baselines # else: # antenna = antenna + ';!0&1' # deselect the shortest baselines res = ptclean3(vis=msfile, imageprefix=imdir, imagesuffix=imagesuffix, twidth=twidth, uvrange=uvrange, spw=spw, ncpu=ncpu, niter=1000, gain=0.05, antenna=antenna, imsize=imsize, cell=cell, stokes=stokes, doreg=True, usephacenter=False, overwrite=overwrite, toTb=toTb, restoringbeam=restoringbeam, specmode="mfs", deconvolver="hogbom", datacolumn='data', pbcor=True) if res: imres['Succeeded'] += res['Succeeded'] imres['BeginTime'] += res['BeginTime'] imres['EndTime'] += res['EndTime'] imres['ImageName'] += res['ImageName'] imres['Spw'] += [spwstr] * len(res['ImageName']) imres['Vis'] += [msfile] * len(res['ImageName']) else: continue if len(vis) == 1: # produce the band-by-band whole-day images ms.open(msfile) ms.selectinit() timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True) tim = timfreq['time'] ms.close() cfreqs = getspwfreq(msfile) imdir = imagedir + subdir[0] if not os.path.exists(imdir): os.makedirs(imdir) for spw in spws: antenna = antenna0 if spw == '': spw = '{:d}~{:d}'.format( next(x[0] for x in enumerate(cfreqs) if x[1] > lowcutoff_freq), len(cfreqs) - 1) spwran = [s.zfill(2) for s in spw.split('~')] freqran = [cfreqs[int(s)] for s in spw.split('~')] cfreq = np.mean(freqran) bmsz = max(150. / cfreq, 20.) uvrange = '' imsize = 512 cell = ['5arcsec'] if len(spwran) == 2: spwstr = spwran[0] + '~' + spwran[1] else: spwstr = spwran[0] restoringbeam = ['{0:.1f}arcsec'.format(bmsz)] imagesuffix = '.synoptic.spw' + spwstr.replace('~', '-') antenna = antenna + ';!0&1' # deselect the shortest baselines res = ptclean3(vis=msfile, imageprefix=imdir, imagesuffix=imagesuffix, twidth=len(tim), uvrange=uvrange, spw=spw, ncpu=1, niter=0, gain=0.05, antenna=antenna, imsize=imsize, cell=cell, stokes=stokes, doreg=True, usephacenter=False, overwrite=overwrite, toTb=toTb, restoringbeam=restoringbeam, specmode="mfs", deconvolver="hogbom", datacolumn='data', pbcor=True) if res: imres['Synoptic']['Succeeded'] += res['Succeeded'] imres['Synoptic']['BeginTime'] += res['BeginTime'] imres['Synoptic']['EndTime'] += res['EndTime'] imres['Synoptic']['ImageName'] += res['ImageName'] imres['Synoptic']['Spw'] += [spwstr] * len(res['ImageName']) imres['Synoptic']['Vis'] += [msfile] * len(res['ImageName']) else: continue # save it for debugging purposes np.savez('imres.npz', imres=imres) return imres
def WEI_plot(dofile=True, vis=None, timerange=None, spw='', aiafits='', imagehead='', workdir='', spwCol=3, phasecenter='J2000 11h00m48 06d14m60'): if vis[-1] == '/': vis = vis[:-1] ms.open(vis) spwInfo = ms.getspectralwindowinfo() ms.close() tb.open(vis) starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd') endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd') tb.close() tb.open(vis + '/SPECTRAL_WINDOW') reffreqs = tb.getcol('REF_FREQUENCY') bdwds = tb.getcol('TOTAL_BANDWIDTH') cfreqs = reffreqs + bdwds / 2. tb.close() sbeam = 35. #get timerange from vis file if not timerange: timerange = '{0}~{1}'.format( starttim.iso.replace('-', '/').replace(' ', '/'), endtim.iso.replace('-', '/').replace(' ', '/')) nspw = len(spwInfo) #draw plot aia fig = plt.figure(figsize=(12, 7), dpi=100) gs1 = gridspec.GridSpec(4, 3) gs1.update(left=0.08, right=0.32, wspace=0.05) ax1 = plt.subplot(gs1[11]) aiamap = smap.Map(aiafits) aiamap.plot(axes=ax1) #do clean spwCol by spwCol for cur_spwCol in range(0, np.floor_divide(nspw, spwCol)): if ((cur_spwCol + 1) * spwCol) < nspw: cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + str( (cur_spwCol + 1) * spwCol) else: cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + '31' imagename = imagehead + cur_spwRange + 'SPWs' cur_eovsaFits = imagename + '.fits' if cur_spwCol < 6: cur_mask = '/srg/ywei/data/eovsa/mask/sep_6mask_' + str( cur_spwCol + 1) + '.rgn' else: cur_mask = '/srg/ywei/data/eovsa/mask/sep_6/mask_6.rgn' if dofile: #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[256,256], niter=100, cell=['2arcsec'] ) #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[512,512], niter=1000, cell=['1arcsec'],stokes='XX', gain=0.05,weighting='briggs', mode='mfs',imagermode='csclean',psfmode='clark',robust=0.0,restoringbeam = ['10.0arcsec'], mask=cur_mask,pbcor=True) clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[512, 512], niter=1000, cell=['1arcsec'], stokes='XX', gain=0.05, weighting='briggs', mode='mfs', imagermode='csclean', psfmode='clark', robust=0.0, restoringbeam=['10.0arcsec'], mask='', pbcor=True) print 'fits name =' + str(cur_eovsaFits) hf.imreg(vis=vis, imagefile=imagename + '.image', fitsfile=imagename + '.fits', timerange=timerange) #plot eovsa cur_emap = smap.Map(cur_eovsaFits) cur_axname = plt.subplot(gs1[cur_spwCol + 1]) (npol, nf, nx, ny) = cur_emap.data.shape print 'shape = ' + str(cur_emap.data.shape) if npol != 1: print 'To be determined' else: cur_emap.data = cur_emap.data.reshape((512, 512)) cur_emap.plot_settings['cmap'] = plt.get_cmap('jet') cur_emap.plot(axes=cur_axname)
interactive = False try: clean( vis=slfcalms, antenna=antennas, imagename=slfcal_img, uvrange=uvranges[n], #spw=sp, spw=spwran, mode='mfs', timerange=trange, imagermode='csclean', psfmode='clark', imsize=[256, 256], cell=['2arcsec'], niter=niters[n], gain=0.05, stokes=pol, weighting='briggs', robust=robusts[n], #phasecenter='J2000 11h14m09 04d52m53', phasecenter='J2000 11h00m48 06d14m60', #mask='box [ [ 75pix , 90pix] , [205pix, 165pix ] ]', mask=cur_mask, #mask='', restoringbeam=[str(bm) + 'arcsec'], pbcor=False, interactive=interactive, usescratch=True) except:
def calibeovsa(vis=None, caltype=None, interp=None, docalib=True, doflag=True, flagant=None, doimage=False, imagedir=None, antenna=None, timerange=None, spw=None, stokes=None, doconcat=False, msoutdir=None, keep_orig_ms=True): ''' :param vis: EOVSA visibility dataset(s) to be calibrated :param caltype: :param interp: :param docalib: :param qlookimage: :param flagant: :param stokes: :param doconcat: :return: ''' if type(vis) == str: vis = [vis] for idx, f in enumerate(vis): if f[-1] == '/': vis[idx] = f[:-1] for msfile in vis: casalog.origin('calibeovsa') if not caltype: casalog.post( "Caltype not provided. Perform reference phase calibration and daily phase calibration." ) caltype = [ 'refpha', 'phacal', 'fluxcal' ] ## use this line after the phacal is applied # caltype = ['refcal'] if not os.path.exists(msfile): casalog.post("Input visibility does not exist. Aborting...") continue if msfile.endswith('/'): msfile = msfile[:-1] if not msfile[-3:] in ['.ms', '.MS']: casalog.post( "Invalid visibility. Please provide a proper visibility file ending with .ms" ) # if not caltable: # caltable=[os.path.basename(vis).replace('.ms','.'+c) for c in caltype] # get band information tb.open(msfile + '/SPECTRAL_WINDOW') nspw = tb.nrows() bdname = tb.getcol('NAME') bd_nchan = tb.getcol('NUM_CHAN') bd = [int(b[4:]) - 1 for b in bdname] # band index from 0 to 33 # nchans = tb.getcol('NUM_CHAN') # reffreqs = tb.getcol('REF_FREQUENCY') # cenfreqs = np.zeros((nspw)) tb.close() tb.open(msfile + '/ANTENNA') nant = tb.nrows() antname = tb.getcol('NAME') antlist = [str(ll) for ll in range(len(antname) - 1)] antennas = ','.join(antlist) tb.close() # get time stamp, use the beginning of the file tb.open(msfile + '/OBSERVATION') trs = {'BegTime': [], 'EndTime': []} for ll in range(tb.nrows()): tim0, tim1 = Time(tb.getcell('TIME_RANGE', ll) / 24 / 3600, format='mjd') trs['BegTime'].append(tim0) trs['EndTime'].append(tim1) tb.close() trs['BegTime'] = Time(trs['BegTime']) trs['EndTime'] = Time(trs['EndTime']) btime = np.min(trs['BegTime']) etime = np.max(trs['EndTime']) # ms.open(vis) # summary = ms.summary() # ms.close() # btime = Time(summary['BeginTime'], format='mjd') # etime = Time(summary['EndTime'], format='mjd') ## stop using ms.summary to avoid conflicts with importeovsa t_mid = Time((btime.mjd + etime.mjd) / 2., format='mjd') print "This scan observed from {} to {} UTC".format( btime.iso, etime.iso) gaintables = [] if ('refpha' in caltype) or ('refamp' in caltype) or ('refcal' in caltype): refcal = ra.sql2refcalX(btime) pha = refcal['pha'] # shape is 15 (nant) x 2 (npol) x 34 (nband) pha[np.where(refcal['flag'] == 1)] = 0. amp = refcal['amp'] amp[np.where(refcal['flag'] == 1)] = 1. t_ref = refcal['timestamp'] # find the start and end time of the local day when refcal is registered try: dhr = t_ref.LocalTime.utcoffset().total_seconds() / 60. / 60. except: dhr = -7. bt = Time(np.fix(t_ref.mjd + dhr / 24.) - dhr / 24., format='mjd') et = Time(bt.mjd + 1., format='mjd') (yr, mon, day) = (bt.datetime.year, bt.datetime.month, bt.datetime.day) dirname = caltbdir + str(yr) + str(mon).zfill(2) + '/' if not os.path.exists(dirname): os.mkdir(dirname) # check if there is any ROACH reboot between the reference calibration found and the current data t_rbts = db.get_reboot(Time([t_ref, btime])) if not t_rbts: casalog.post( "Reference calibration is derived from observation at " + t_ref.iso) print "Reference calibration is derived from observation at " + t_ref.iso else: casalog.post( "Oh crap! Roach reboot detected between the reference calibration time " + t_ref.iso + ' and the current observation at ' + btime.iso) casalog.post("Aborting...") print "Oh crap! Roach reboot detected between the reference calibration time " + t_ref.iso + ' and the current observation at ' + btime.iso print "Aborting..." para_pha = [] para_amp = [] calpha = np.zeros((nspw, 15, 2)) calamp = np.zeros((nspw, 15, 2)) for s in range(nspw): for n in range(15): for p in range(2): calpha[s, n, p] = pha[n, p, bd[s]] calamp[s, n, p] = amp[n, p, bd[s]] para_pha.append(np.degrees(pha[n, p, bd[s]])) para_amp.append(amp[n, p, bd[s]]) if 'fluxcal' in caltype: calfac = pc.get_calfac(Time(t_mid.iso.split(' ')[0] + 'T23:59:59')) t_bp = Time(calfac['timestamp'], format='lv') if int(t_mid.mjd) == int(t_bp.mjd): accalfac = calfac['accalfac'] # (ant x pol x freq) # tpcalfac = calfac['tpcalfac'] # (ant x pol x freq) caltb_autoamp = dirname + t_bp.isot[:-4].replace( ':', '').replace('-', '') + '.bandpass' if not os.path.exists(caltb_autoamp): bandpass(vis=msfile, caltable=caltb_autoamp, solint='inf', refant='eo01', minblperant=0, minsnr=0, bandtype='B', docallib=False) tb.open(caltb_autoamp, nomodify=False) # (ant x spw) bd_chanidx = np.hstack([[0], bd_nchan.cumsum()]) for ll in range(nspw): antfac = np.sqrt( accalfac[:, :, bd_chanidx[ll]:bd_chanidx[ll + 1]]) # # antfac *= tpcalfac[:, :,bd_chanidx[ll]:bd_chanidx[ll + 1]] antfac = np.moveaxis(antfac, 0, 2) cparam = np.zeros((2, bd_nchan[ll], nant)) cparam[:, :, :-3] = 1.0 / antfac tb.putcol('CPARAM', cparam + 0j, ll * nant, nant) paramerr = tb.getcol('PARAMERR', ll * nant, nant) paramerr = paramerr * 0 tb.putcol('PARAMERR', paramerr, ll * nant, nant) bpflag = tb.getcol('FLAG', ll * nant, nant) bpant1 = tb.getcol('ANTENNA1', ll * nant, nant) bpflagidx, = np.where(bpant1 >= 13) bpflag[:] = False bpflag[:, :, bpflagidx] = True tb.putcol('FLAG', bpflag, ll * nant, nant) bpsnr = tb.getcol('SNR', ll * nant, nant) bpsnr[:] = 100.0 bpsnr[:, :, bpflagidx] = 0.0 tb.putcol('SNR', bpsnr, ll * nant, nant) tb.close() msg_prompt = "Scaling calibration is derived for {}.".format( msfile) casalog.post(msg_prompt) print msg_prompt gaintables.append(caltb_autoamp) else: msg_prompt = "Caution: No TPCAL is available on {}. No scaling calibration is derived for {}.".format( t_mid.datetime.strftime('%b %d, %Y'), msfile) casalog.post(msg_prompt) print msg_prompt if ('refpha' in caltype) or ('refcal' in caltype): # caltb_pha = os.path.basename(vis).replace('.ms', '.refpha') # check if the calibration table already exists caltb_pha = dirname + t_ref.isot[:-4].replace(':', '').replace( '-', '') + '.refpha' if not os.path.exists(caltb_pha): gencal(vis=msfile, caltable=caltb_pha, caltype='ph', antenna=antennas, pol='X,Y', spw='0~' + str(nspw - 1), parameter=para_pha) gaintables.append(caltb_pha) if ('refamp' in caltype) or ('refcal' in caltype): # caltb_amp = os.path.basename(vis).replace('.ms', '.refamp') caltb_amp = dirname + t_ref.isot[:-4].replace(':', '').replace( '-', '') + '.refamp' if not os.path.exists(caltb_amp): gencal(vis=msfile, caltable=caltb_amp, caltype='amp', antenna=antennas, pol='X,Y', spw='0~' + str(nspw - 1), parameter=para_amp) gaintables.append(caltb_amp) # calibration for the change of delay center between refcal time and beginning of scan -- hopefully none! xml, buf = ch.read_calX(4, t=[t_ref, btime], verbose=False) if buf: dly_t2 = Time(stf.extract(buf[0], xml['Timestamp']), format='lv') dlycen_ns2 = stf.extract(buf[0], xml['Delaycen_ns'])[:15] xml, buf = ch.read_calX(4, t=t_ref) dly_t1 = Time(stf.extract(buf, xml['Timestamp']), format='lv') dlycen_ns1 = stf.extract(buf, xml['Delaycen_ns'])[:15] dlycen_ns_diff = dlycen_ns2 - dlycen_ns1 for n in range(2): dlycen_ns_diff[:, n] -= dlycen_ns_diff[0, n] print 'Multi-band delay is derived from delay center difference at {} & {}'.format( dly_t1.iso, dly_t2.iso) # print '=====Delays relative to Ant 14=====' # for i, dl in enumerate(dlacen_ns_diff[:, 0] - dlacen_ns_diff[13, 0]): # ant = antlist[i] # print 'Ant eo{0:02d}: x {1:.2f} ns & y {2:.2f} ns'.format(int(ant) + 1, dl # dlacen_ns_diff[i, 1] - dlacen_ns_diff[13, 1]) # caltb_mbd0 = os.path.basename(vis).replace('.ms', '.mbd0') caltb_dlycen = dirname + dly_t2.isot[:-4].replace(':', '').replace( '-', '') + '.dlycen' if not os.path.exists(caltb_dlycen): gencal(vis=msfile, caltable=caltb_dlycen, caltype='mbd', pol='X,Y', antenna=antennas, parameter=dlycen_ns_diff.flatten().tolist()) gaintables.append(caltb_dlycen) if 'phacal' in caltype: phacals = np.array( ra.sql2phacalX([bt, et], neat=True, verbose=False)) if not phacals.any() or len(phacals) == 0: print "Found no phacal records in SQL database, will skip phase calibration" else: # first generate all phacal calibration tables if not already exist t_phas = Time([phacal['t_pha'] for phacal in phacals]) # sort the array in ascending order by t_pha sinds = t_phas.mjd.argsort() t_phas = t_phas[sinds] phacals = phacals[sinds] caltbs_phambd = [] for i, phacal in enumerate(phacals): # filter out phase cals with reference time stamp >30 min away from the provided refcal time if (phacal['t_ref'].jd - refcal['timestamp'].jd) > 30. / 1440.: del phacals[i] del t_phas[i] continue else: t_pha = phacal['t_pha'] phambd_ns = phacal['pslope'] for n in range(2): phambd_ns[:, n] -= phambd_ns[0, n] # set all flagged values to be zero phambd_ns[np.where(phacal['flag'] == 1)] = 0. caltb_phambd = dirname + t_pha.isot[:-4].replace( ':', '').replace('-', '') + '.phambd' caltbs_phambd.append(caltb_phambd) if not os.path.exists(caltb_phambd): gencal(vis=msfile, caltable=caltb_phambd, caltype='mbd', pol='X,Y', antenna=antennas, parameter=phambd_ns.flatten().tolist()) # now decides which table to apply depending on the interpolation method ("neatest" or "linear") if interp == 'nearest': tbind = np.argmin(np.abs(t_phas.mjd - t_mid.mjd)) dt = np.min(np.abs(t_phas.mjd - t_mid.mjd)) * 24. print "Selected nearest phase calibration table at " + t_phas[ tbind].iso gaintables.append(caltbs_phambd[tbind]) if interp == 'linear': # bphacal = ra.sql2phacalX(btime) # ephacal = ra.sql2phacalX(etime,reverse=True) bt_ind, = np.where(t_phas.mjd < btime.mjd) et_ind, = np.where(t_phas.mjd > etime.mjd) if len(bt_ind) == 0 and len(et_ind) == 0: print "No phacal found before or after the ms data within the day of observation" print "Skipping daily phase calibration" elif len(bt_ind) > 0 and len(et_ind) == 0: gaintables.append(caltbs_phambd[bt_ind[-1]]) elif len(bt_ind) == 0 and len(et_ind) > 0: gaintables.append(caltbs_phambd[et_ind[0]]) elif len(bt_ind) > 0 and len(et_ind) > 0: bphacal = phacals[bt_ind[-1]] ephacal = phacals[et_ind[0]] # generate a new table interpolating between two daily phase calibrations t_pha_mean = Time(np.mean( [bphacal['t_pha'].mjd, ephacal['t_pha'].mjd]), format='mjd') phambd_ns = (bphacal['pslope'] + ephacal['pslope']) / 2. for n in range(2): phambd_ns[:, n] -= phambd_ns[0, n] # set all flagged values to be zero phambd_ns[np.where(bphacal['flag'] == 1)] = 0. phambd_ns[np.where(ephacal['flag'] == 1)] = 0. caltb_phambd_interp = dirname + t_pha_mean.isot[:-4].replace( ':', '').replace('-', '') + '.phambd' if not os.path.exists(caltb_phambd_interp): gencal(vis=msfile, caltable=caltb_phambd_interp, caltype='mbd', pol='X,Y', antenna=antennas, parameter=phambd_ns.flatten().tolist()) print "Using phase calibration table interpolated between records at " + bphacal[ 't_pha'].iso + ' and ' + ephacal['t_pha'].iso gaintables.append(caltb_phambd_interp) if docalib: clearcal(msfile) applycal(vis=msfile, gaintable=gaintables, applymode='calflag', calwt=False) # delete the interpolated phase calibration table try: caltb_phambd_interp except: pass else: if os.path.exists(caltb_phambd_interp): shutil.rmtree(caltb_phambd_interp) if doflag: # flag zeros and NaNs flagdata(vis=msfile, mode='clip', clipzeros=True) if flagant: try: flagdata(vis=msfile, antenna=flagant) except: print "Something wrong with flagant. Abort..." if doimage: from matplotlib import pyplot as plt from suncasa.utils import helioimage2fits as hf from sunpy import map as smap if not antenna: antenna = '0~12' if not stokes: stokes = 'XX' if not timerange: timerange = '' if not spw: spw = '1~3' if not imagedir: imagedir = '.' #(yr, mon, day) = (bt.datetime.year, bt.datetime.month, bt.datetime.day) #dirname = imagedir + str(yr) + '/' + str(mon).zfill(2) + '/' + str(day).zfill(2) + '/' #if not os.path.exists(dirname): # os.makedirs(dirname) bds = [spw] nbd = len(bds) imgs = [] for bd in bds: if '~' in bd: bdstr = bd.replace('~', '-') else: bdstr = str(bd).zfill(2) imname = imagedir + '/' + os.path.basename(msfile).replace( '.ms', '.bd' + bdstr) print 'Cleaning image: ' + imname try: clean(vis=msfile, imagename=imname, antenna=antenna, spw=bd, timerange=timerange, imsize=[512], cell=['5.0arcsec'], stokes=stokes, niter=500) except: print 'clean not successfull for band ' + str(bd) else: imgs.append(imname + '.image') junks = ['.flux', '.mask', '.model', '.psf', '.residual'] for junk in junks: if os.path.exists(imname + junk): shutil.rmtree(imname + junk) tranges = [btime.iso + '~' + etime.iso] * nbd fitsfiles = [img.replace('.image', '.fits') for img in imgs] hf.imreg(vis=msfile, timerange=tranges, imagefile=imgs, fitsfile=fitsfiles, usephacenter=False) plt.figure(figsize=(6, 6)) for i, fitsfile in enumerate(fitsfiles): plt.subplot(1, nbd, i + 1) eomap = smap.Map(fitsfile) sz = eomap.data.shape if len(sz) == 4: eomap.data = eomap.data.reshape((sz[2], sz[3])) eomap.plot_settings['cmap'] = plt.get_cmap('jet') eomap.plot() eomap.draw_limb() eomap.draw_grid() plt.show() if doconcat: if len(vis) > 1: # from suncasa.eovsa import concateovsa as ce from suncasa.tasks import concateovsa_cli as ce if msoutdir is None: msoutdir = './' concatvis = os.path.basename(vis[0]) concatvis = msoutdir + '/' + concatvis.split('.')[0] + '_concat.ms' ce.concateovsa(vis, concatvis, datacolumn='corrected', keep_orig_ms=keep_orig_ms, cols2rm="model,corrected") return [concatvis] else: return vis
def clean_iter( tim, freq, vis, imageprefix, imagesuffix, ncpu, twidth, doreg, usephacenter, reftime, ephem, msinfo, toTb, overwrite, outlierfile, field, spw, selectdata, uvrange, antenna, scan, observation, intent, mode, resmooth, gridmode, wprojplanes, facets, cfcache, rotpainc, painc, aterm, psterm, mterm, wbawp, conjbeams, epjtable, interpolation, niter, gain, threshold, psfmode, imagermode, ftmachine, mosweight, scaletype, multiscale, negcomponent, smallscalebias, interactive, mask, nchan, start, width, outframe, veltype, imsize, cell, phasecenter, restfreq, stokes, weighting, robust, uvtaper, outertaper, innertaper, modelimage, restoringbeam, pbcor, minpb, usescratch, noise, npixels, npercycle, cyclefactor, cyclespeedup, nterms, reffreq, chaniter, flatnoise, allowchunk, btidx): from taskinit import ms from taskinit import qa # from __casac__.quanta import quanta as qa from __main__ import default, inp #from clean import clean from clean_cli import clean_cli as clean bt = btidx # 0 if bt + twidth < len(tim) - 1: et = btidx + twidth - 1 else: et = len(tim) - 1 # tim_d = tim/3600./24.-np.fix(tim/3600./24.) if bt == 0: bt_d = tim[bt] - ((tim[bt + 1] - tim[bt]) / 2) else: bt_d = tim[bt] - ((tim[bt] - tim[bt - 1]) / 2) if et == (len(tim) - 1) or et == -1: et_d = tim[et] + ((tim[et] - tim[et - 1]) / 2) else: et_d = tim[et] + ((tim[et + 1] - tim[et]) / 2) # # bt_d=tim[bt] # et_d=tim[et]+0.005 timerange = qa.time(qa.quantity(bt_d, 's'), prec=9, form='ymd')[0] + '~' + \ qa.time(qa.quantity(et_d, 's'), prec=9, form='ymd')[0] tmid = (bt_d + et_d) / 2. btstr = qa.time(qa.quantity(bt_d, 's'), prec=9, form='fits')[0] etstr = qa.time(qa.quantity(et_d, 's'), prec=9, form='fits')[0] print 'cleaning timerange: ' + timerange image0 = btstr.replace(':', '').replace('-', '') imname = imageprefix + image0 + imagesuffix if overwrite or (len(glob.glob(imname + '*')) == 0): # inp(taskname = 'clean') os.system('rm -rf {}*'.format(imname)) try: clean(vis=vis, imagename=imname, outlierfile=outlierfile, field=field, spw=spw, selectdata=selectdata, timerange=timerange, uvrange=uvrange, antenna=antenna, scan=scan, observation=str(observation), intent=intent, mode=mode, resmooth=resmooth, gridmode=gridmode, wprojplanes=wprojplanes, facets=facets, cfcache=cfcache, rotpainc=rotpainc, painc=painc, psterm=psterm, aterm=aterm, mterm=mterm, wbawp=wbawp, conjbeams=conjbeams, epjtable=epjtable, interpolation=interpolation, niter=niter, gain=gain, threshold=threshold, psfmode=psfmode, imagermode=imagermode, ftmachine=ftmachine, mosweight=mosweight, scaletype=scaletype, multiscale=multiscale, negcomponent=negcomponent, smallscalebias=smallscalebias, interactive=interactive, mask=mask, nchan=nchan, start=start, width=width, outframe=outframe, veltype=veltype, imsize=imsize, cell=cell, phasecenter=phasecenter, restfreq=restfreq, stokes=stokes, weighting=weighting, robust=robust, uvtaper=uvtaper, outertaper=outertaper, innertaper=innertaper, modelimage=modelimage, restoringbeam=restoringbeam, pbcor=pbcor, minpb=minpb, usescratch=usescratch, noise=noise, npixels=npixels, npercycle=npercycle, cyclefactor=cyclefactor, cyclespeedup=cyclespeedup, nterms=nterms, reffreq=reffreq, chaniter=chaniter, flatnoise=flatnoise, allowchunk=False) clnjunks = ['.flux', '.mask', '.model', '.psf', '.residual'] for clnjunk in clnjunks: if os.path.exists(imname + clnjunk): shutil.rmtree(imname + clnjunk) except: print('error in cleaning image: ' + btstr) return [False, btstr, etstr, ''] else: print imname + ' exists. Clean task aborted.' if doreg and not os.path.isfile(imname + '.fits'): #ephem.keys() #msinfo.keys() try: # check if ephemfile and msinfofile exist if not ephem: print( "ephemeris info does not exist, querying from JPL Horizons on the fly" ) ephem = hf.read_horizons(vis) if not msinfo: print("ms info not provided, generating one on the fly") msinfo = hf.read_msinfo(vis) hf.imreg(vis=vis, ephem=ephem, msinfo=msinfo, timerange=timerange, reftime=reftime, imagefile=imname + '.image', fitsfile=imname + '.fits', toTb=toTb, scl100=False, usephacenter=usephacenter) if os.path.exists(imname + '.fits'): shutil.rmtree(imname + '.image') return [True, btstr, etstr, imname + '.fits'] else: return [False, btstr, etstr, ''] except: print('error in registering image: ' + btstr) return [False, btstr, etstr, imname + '.image'] else: if os.path.exists(imname + '.image'): return [True, btstr, etstr, imname + '.image'] else: return [False, btstr, etstr, '']
def svplot(vis, timerange=None, spw='', workdir='./', specfile=None, bl=None, uvrange=None, stokes='RR,LL', dmin=None, dmax=None, goestime=None, reftime=None, xycen=None, fov=[500.,500.], xyrange=None, restoringbeam=[''], robust=0.0, niter=500, imsize=[512], cell=['5.0arcsec'],interactive=False, usemsphacenter=True, imagefile=None, fitsfile=None, plotaia=True, aiawave=171, aiafits=None, savefig=False, mkmovie=False, overwrite=True, ncpu=10, twidth=1, verbose=True): ''' Required inputs: vis: calibrated CASA measurement set Important optional inputs: timerange: timerange for clean. Standard CASA time selection format. If not provided, use the entire range (*BE CAREFUL, COULD BE VERY SLOW*) spw: spectral window selection following the CASA syntax. Examples: spw='1:2~60' (spw id 1, channel range 2-60); spw='*:1.2~1.3GHz' (selects all channels within 1.2-1.3 GHz; note the *) specfile: supply dynamic spectrum save file (from suncasa.utils.dspec2.get_dspec()). Otherwise generate a median dynamic spectrum on the fly Optional inputs: bl: baseline to generate dynamic spectrum uvrange: uvrange to select baselines for generating dynamic spectrum stokes: polarization of the clean image, can be 'RR,LL' or 'I,V' dmin,dmax: color bar parameter goestime: goes plot time, example ['2016/02/18 18:00:00','2016/02/18 23:00:00'] rhessisav: rhessi savefile reftime: reftime for the image xycen: center of the image in helioprojective coordinates (HPLN/HPLT), in arcseconds. Example: [900, -150.] fov: field of view in arcsecs. Example: [500., 500.] xyrange: field of view in solar XY coordinates. Format: [[x1,x2],[y1,y2]]. Example: [[900., 1200.],[0,300]] ***NOTE: THIS PARAMETER OVERWRITES XYCEN AND FOV*** aiawave: wave length of aia file in a imagefile: if imagefile provided, use it. Otherwise do clean and generate a new one. fitsfile: if fitsfile provided, use it. Otherwise generate a new one savefig: whether to save the figure Example: ''' if xycen: xc, yc = xycen xlen, ylen = fov if parse_version(sunpy.__version__)>parse_version('0.8.0'): xyrange = [[xc - xlen / 2.0, yc - ylen / 2.0], [xc + xlen / 2.0, yc + ylen / 2.0]] else: xyrange = [[xc - xlen / 2.0, xc + xlen / 2.0], [yc - ylen / 2.0, yc + ylen / 2.0]] stokes_allowed = ['RR,LL', 'I,V', 'RRLL', 'IV'] if not stokes in stokes_allowed: print 'wrong stokes parameter ' + str(stokes) + '. Allowed values are ' + ', '.join(stokes_allowed) return -1 if stokes == 'RRLL': stokes = 'RR,LL' if stokes == 'IV': stokes = 'I,V' if vis[-1] == '/': vis = vis[:-1] if not os.path.exists(vis): print 'input measurement not exist' return -1 if aiafits is None: aiafits = '' # split the data # generating dynamic spectrum if not os.path.exists(workdir): os.makedirs(workdir) if specfile: try: specdata = np.load(specfile) except: print('Provided dynamic spectrum file not numpy npz. Generating one from the visibility data') specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz') dspec_external(vis, workdir=workdir, specfile=specfile) specdata = np.load(specfile) # specdata = ds.get_dspec(vis, domedian=True, verbose=True) else: print('Dynamic spectrum file not provided; Generating one from the visibility data') # specdata = ds.get_dspec(vis, domedian=True, verbose=True) specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz') dspec_external(vis, workdir=workdir, specfile=specfile) specdata = np.load(specfile) tb.open(vis) starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd') endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd') tb.close() datstr = starttim.iso[:10] if timerange is None or timerange == '': starttim1 = starttim endtim1 = endtim timerange = '{0}~{1}'.format(starttim.iso.replace('-', '/').replace(' ', '/'), endtim.iso.replace('-', '/').replace(' ', '/')) else: try: (tstart, tend) = timerange.split('~') if tstart[2] == ':': starttim1 = Time(datstr + 'T' + tstart) endtim1 = Time(datstr + 'T' + tend) timerange = '{0}/{1}~{0}/{2}'.format(datstr.replace('-', '/'), tstart, tend) else: starttim1 = Time(qa.quantity(tstart, 'd')['value'], format='mjd') endtim1 = Time(qa.quantity(tend, 'd')['value'], format='mjd') except ValueError: print "keyword 'timerange' in wrong format" midtime_mjd = (starttim1.mjd + endtim1.mjd) / 2. if vis.endswith('/'): vis = vis[:-1] visname = os.path.basename(vis) bt = starttim1.plot_date et = endtim1.plot_date # find out min and max frequency for plotting in dynamic spectrum ms.open(vis) metadata = ms.metadata() observatory = metadata.observatorynames()[0] spwInfo = ms.getspectralwindowinfo() nspw = len(spwInfo) if not spw: spw = '0~' + str(nspw - 1) staql = {'timerange': timerange, 'spw': spw} if ms.msselect(staql, onlyparse=True): ndx = ms.msselectedindices() chan_sel = ndx['channel'] nspw = chan_sel.shape[0] bspw = chan_sel[0, 0] bchan = chan_sel[0, 1] espw = chan_sel[-1, 0] echan = chan_sel[-1, 2] bfreq = spwInfo[str(bspw)]['Chan1Freq'] + spwInfo[str(bspw)]['ChanWidth'] * bchan efreq = spwInfo[str(espw)]['Chan1Freq'] + spwInfo[str(espw)]['ChanWidth'] * echan bfreqghz = bfreq / 1e9 efreqghz = efreq / 1e9 if verbose: print 'selected timerange {}'.format(timerange) print 'selected frequency range {0:6.3f} to {1:6.3f} GHz'.format(bfreqghz, efreqghz) else: print "spw or timerange selection failed. Aborting..." ms.close() return -1 ms.close() if observatory == 'EOVSA': print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV' stokes = 'I,V' if mkmovie: plt.ioff() # fig = plt.figure(figsize=(12, 7.5), dpi=100) if fitsfile: pass else: if not imagefile: # from ptclean_cli import ptclean_cli as ptclean eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd')) if observatory == 'EOVSA' or (not usemsphacenter): phasecenter = '' else: phasecenter = 'J2000 ' + str(eph['ra'][0])[:15] + 'rad ' + str(eph['dec'][0])[:15] + 'rad' print 'use phasecenter: ' + phasecenter qlookfitsdir = os.path.join(workdir, 'qlookfits/') qlookfigdir = os.path.join(workdir, 'qlookimgs/') imresfile = os.path.join(qlookfitsdir, '{}.imres.npz'.format(os.path.basename(vis))) if overwrite: imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes, c_external=True) else: if os.path.exists(imresfile): imres = np.load(imresfile) imres = imres['imres'].item() else: print('Image results file not found; Creating new images.') imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes, c_external=True) if not os.path.exists(qlookfigdir): os.makedirs(qlookfigdir) plt_qlook_image(imres, figdir=qlookfigdir, specdata=specdata, verbose=True, stokes=stokes, fov=xyrange) else: spec = specdata['spec'] (npol, nbl, nfreq, ntim) = spec.shape tidx = range(ntim) fidx = range(nfreq) tim = specdata['tim'] freq = specdata['freq'] freqghz = freq / 1e9 spec_tim = Time(specdata['tim'] / 3600. / 24., format='mjd') timstrr = spec_tim.plot_date plt.ion() fig = plt.figure(figsize=(12, 7), dpi=100) gs1 = gridspec.GridSpec(3, 1) gs1.update(left=0.08, right=0.32, wspace=0.05) gs2 = gridspec.GridSpec(2, 2) gs2.update(left=0.38, right=0.98, hspace=0.02, wspace=0.02) spec_1 = np.absolute(spec[0, 0, :, :]) spec_2 = np.absolute(spec[1, 0, :, :]) if observatory == 'EVLA': # circular feeds polstr = ['RR', 'LL'] if observatory == 'EOVSA' or observatory == 'ALMA': # linear feeds polstr = ['XX', 'YY'] print 'plot the dynamic spectrum in pol ' + ' & '.join(polstr) ax1 = plt.subplot(gs1[0]) ax1.pcolormesh(timstrr, freqghz, spec_1, cmap='jet', vmin=dmin, vmax=dmax) ax1.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]]) ax1.xaxis_date() ax1.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) # ax1.set_xticklabels(['']*10) ax1.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) ax1.set_ylabel('Frequency (GHz)', fontsize=10) ax1.set_title(observatory + ' ' + datstr + ' ' + polstr[0] + ' & ' + polstr[1], fontsize=12) ax1.set_autoscale_on(False) ax1.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False)) ax1.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12) for tick in ax1.get_xticklabels(): tick.set_fontsize(8) for tick in ax1.get_yticklabels(): tick.set_fontsize(8) ax2 = plt.subplot(gs1[1]) ax2.pcolormesh(timstrr, freqghz, spec_2, cmap='jet', vmin=dmin, vmax=dmax) ax2.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]]) ax2.xaxis_date() ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) ax2.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) ax2.set_ylabel('Frequency (GHz)', fontsize=10) for tick in ax2.get_xticklabels(): tick.set_fontsize(8) for tick in ax2.get_yticklabels(): tick.set_fontsize(8) ax2.set_autoscale_on(False) ax2.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False)) ax2.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12) # Second part: GOES plot if goestime: btgoes = goestime[0] etgoes = goestime[1] else: datstrg = datstr.replace('-', '/') btgoes = datstrg + ' ' + qa.time(qa.quantity(tim[0] - 1800, 's'), form='clean', prec=9)[0] etgoes = datstrg + ' ' + qa.time(qa.quantity(tim[tidx[-1] - 1] + 1800, 's'), form='clean', prec=9)[0] if verbose: print 'Acquire GOES soft X-ray data in from ' + btgoes + ' to ' + etgoes ax3 = plt.subplot(gs1[2]) try: from sunpy import lightcurve as lc from sunpy.time import TimeRange goest = lc.GOESLightCurve.create(TimeRange(btgoes, etgoes)) except: goesscript = os.path.join(workdir, 'goes.py') goesdatafile = os.path.join(workdir, 'goes.dat') os.system('rm -rf {}'.format(goesscript)) fi = open(goesscript, 'wb') fi.write('import os \n') fi.write('from sunpy.time import TimeRange \n') fi.write('from sunpy import lightcurve as lc \n') fi.write('import pickle \n') fi.write('goesplottim = TimeRange("{0}", "{1}") \n'.format(btgoes, etgoes)) fi.write('goes = lc.GOESLightCurve.create(goesplottim) \n') fi.write('fi2 = open("{}", "wb") \n'.format(goesdatafile)) fi.write('pickle.dump(goes, fi2) \n') fi.write('fi2.close()') fi.close() try: os.system('python {}'.format(goesscript)) os.system('rm -rf {}'.format(goesscript)) except NameError: print "Bad input names" except ValueError: print "Bad input values" except: print "Unexpected error:", sys.exc_info()[0] print "Error in generating GOES light curves. Proceed without GOES..." if os.path.exists(goesdatafile): fi1 = file(goesdatafile, 'rb') goest = pickle.load(fi1) fi1.close() try: dates = mpl.dates.date2num(parse_time(goest.data.index)) goesdif = np.diff(goest.data['xrsb']) gmax = np.nanmax(goesdif) gmin = np.nanmin(goesdif) ran = gmax - gmin db = 2.8 / ran goesdifp = goesdif * db + gmin + (-6) ax3.plot_date(dates, np.log10(goest.data['xrsb']), '-', label='1.0--8.0 $\AA$', color='red', lw=2) ax3.plot_date(dates[0:-1], goesdifp, '-', label='derivate', color='blue', lw=0.4) ax3.set_ylim([-7, -3]) ax3.set_yticks([-7, -6, -5, -4, -3]) ax3.set_yticklabels([r'$10^{-7}$', r'$10^{-6}$', r'$10^{-5}$', r'$10^{-4}$', r'$10^{-3}$']) ax3.set_title('Goes Soft X-ray', fontsize=12) ax3.set_ylabel('Watts m$^{-2}$') ax3.set_xlabel(datetime.datetime.isoformat(goest.data.index[0])[0:10]) ax3.axvspan(dates[899], dates[dates.size - 899], alpha=0.2) ax2 = ax3.twinx() # ax2.set_yscale("log") ax2.set_ylim([-7, -3]) ax2.set_yticks([-7, -6, -5, -4, -3]) ax2.set_yticklabels(['B', 'C', 'M', 'X', '']) ax3.yaxis.grid(True, 'major') ax3.xaxis.grid(False, 'major') ax3.legend(prop={'size': 6}) formatter = mpl.dates.DateFormatter('%H:%M') ax3.xaxis.set_major_formatter(formatter) ax3.fmt_xdata = mpl.dates.DateFormatter('%H:%M') except: print 'Error in downloading GOES soft X-ray data. Proceeding with out soft X-ray plot.' # third part # start to download the fits files if plotaia: if not aiafits: newlist = [] items = glob.glob('*.fits') for names in items: str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[ 11:13] + '_' + starttim1.iso[14:16] str2 = str(aiawave) if names.endswith(".fits"): if names.find(str1) != -1 and names.find(str2) != -1: newlist.append(names) newlist.append('0') if newlist and os.path.exists(newlist[0]): aiafits = newlist[0] else: print 'downloading the aiafits file' wave1 = aiawave - 3 wave2 = aiawave + 3 t1 = Time(starttim1.mjd - 0.02 / 24., format='mjd') t2 = Time(endtim1.mjd + 0.02 / 24., format='mjd') try: from sunpy.net import vso client = vso.VSOClient() qr = client.query(vso.attrs.Time(t1.iso, t2.iso), vso.attrs.Instrument('aia'), vso.attrs.Wave(wave1 * u.AA, wave2 * u.AA)) res = client.get(qr, path='{file}') except: SdoDownloadscript = os.path.join(workdir, 'SdoDownload.py') os.system('rm -rf {}'.format(SdoDownloadscript)) fi = open(SdoDownloadscript, 'wb') fi.write('from sunpy.net import vso \n') fi.write('from astropy import units as u \n') fi.write('client = vso.VSOClient() \n') fi.write( "qr = client.query(vso.attrs.Time('{0}', '{1}'), vso.attrs.Instrument('aia'), vso.attrs.Wave({2} * u.AA, {3} * u.AA)) \n".format( t1.iso, t2.iso, wave1, wave2)) fi.write("res = client.get(qr, path='{file}') \n") fi.close() try: os.system('python {}'.format(SdoDownloadscript)) except NameError: print "Bad input names" except ValueError: print "Bad input values" except: print "Unexpected error:", sys.exc_info()[0] print "Error in Downloading AIA fits files. Proceed without AIA..." # Here something is needed to check whether it has finished downloading the fits files or not if not aiafits: newlist = [] items = glob.glob('*.fits') for nm in items: str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[ 11:13] + '_' + starttim1.iso[14:16] str2 = str(aiawave) if nm.find(str1) != -1 and nm.find(str2) != -1: newlist.append(nm) if newlist: aiafits = newlist[0] print 'AIA fits ' + aiafits + ' selected' else: print 'no AIA fits files found. Proceed without AIA' try: aiamap = smap.Map(aiafits) except: print 'error in reading aiafits. Proceed without AIA' # RCP or I ax4 = plt.subplot(gs2[0, 0]) ax5 = plt.subplot(gs2[1, 0]) # LCP or V ax6 = plt.subplot(gs2[0, 1]) ax7 = plt.subplot(gs2[1, 1]) if fitsfile: pass else: if not imagefile: eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd')) if observatory == 'EOVSA' or (not usemsphacenter): print 'This is EOVSA data' # use RA and DEC from FIELD ID 0 tb.open(vis+'/FIELD') phadir = tb.getcol('PHASE_DIR').flatten() tb.close() ra0 = phadir[0] dec0 = phadir[1] if stokes == 'RRLL' or stokes == 'RR,LL': print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV' stokes = 'I,V' else: ra0 = eph['ra'][0] dec0 = eph['dec'][0] if not xycen: # use solar disk center as default phasecenter = 'J2000 ' + str(ra0) + 'rad ' + str(dec0) + 'rad' else: x0 = np.radians(xycen[0]/3600.) y0 = np.radians(xycen[1]/3600.) p0 = np.radians(eph['p0'][0]) # p angle in radians raoff = -((x0) * np.cos(p0) - y0 * np.sin(p0))/np.cos(eph['dec'][0]) decoff = (x0) * np.sin(p0) + y0 * np.cos(p0) newra = ra0 + raoff newdec = dec0 + decoff phasecenter = 'J2000 ' + str(newra) + 'rad ' + str(newdec) + 'rad' imagename = os.path.join(workdir, visname + '.outim') if os.path.exists(imagename + '.image') or os.path.exists(imagename + '.flux'): os.system('rm -rf ' + imagename + '.*') sto = stokes.replace(',', '') print 'do clean for ' + timerange + ' in spw ' + spw + ' stokes ' + sto print 'Original phasecenter: '+ str(ra0) + str(dec0) print 'use phasecenter: ' + phasecenter clean(vis=vis, imagename=imagename, selectdata=True, spw=spw, timerange=timerange, stokes=sto, niter=niter, interactive=interactive, npercycle=50, imsize=imsize, cell=cell, restoringbeam=restoringbeam, weighting='briggs', robust=robust, phasecenter=phasecenter) os.system('rm -rf ' + imagename + '.psf') os.system('rm -rf ' + imagename + '.flux') os.system('rm -rf ' + imagename + '.model') os.system('rm -rf ' + imagename + '.mask') os.system('rm -rf ' + imagename + '.residual') imagefile = imagename + '.image' fitsfile = imagefile + '.fits' hf.imreg(vis=vis, ephem=eph, imagefile=imagefile, timerange=timerange, reftime=reftime, fitsfile=fitsfile, verbose=True, overwrite=True) print 'fits file ' + fitsfile + ' selected' ax4.cla() ax5.cla() ax6.cla() ax7.cla() rfits = fitsfile try: hdulist = fits.open(rfits) hdu = hdulist[0] (npol, nf, nx, ny) = hdu.data.shape rmap = smap.Map(hdu.data[0, 0, :, :], hdu.header) except: print 'radio fits file not recognized by sunpy.map. Aborting...' return -1 if npol > 1: rmap1 = smap.Map(hdu.data[0, 0, :, :], hdu.header) rmap2 = smap.Map(hdu.data[1, 0, :, :], hdu.header) XX, YY = np.meshgrid(np.arange(rmap.data.shape[1]), np.arange(rmap.data.shape[0])) try: rmapx, rmapy = rmap.pixel_to_data(XX * u.pix, YY * u.pix) except: rmapxy = rmap.pixel_to_data(XX * u.pix, YY * u.pix) rmapx = rmapxy.Tx rmapy = rmapxy.Ty if not xyrange: if xycen: x0 = xycen[0] * u.arcsec y0 = xycen[1] * u.arcsec if not xycen: row, col = rmap1.data.shape positon = np.nanargmax(rmap1.data) m, n = divmod(positon, col) x0 = rmap1.xrange[0] + rmap1.scale[1] * (n + 0.5) * u.pix y0 = rmap1.yrange[0] + rmap1.scale[0] * (m + 0.5) * u.pix if len(fov) == 1: fov=[fov]*2 sz_x = fov[0] * u.arcsec sz_y = fov[1] * u.arcsec x1 = x0 - sz_x/2. x2 = x0 + sz_x/2. y1 = y0 - sz_y/2. y2 = y0 + sz_y/2. xyrange = [[x1.value, x2.value], [y1.value, y2.value]] else: sz_x = xyrange[0][1] - xyrange[0][0] sz_y = xyrange[1][1] - xyrange[1][0] clevels1 = np.linspace(0.2, 0.9, 5) if stokes.split(',')[1] == 'V': clevels2 = np.array([0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8]) else: clevels2 = np.linspace(0.2, 0.9, 5) if 'aiamap' in vars(): aiamap.plot_settings['cmap'] = plt.get_cmap('binary') if rmap: title = 'AIA {0:.0f} + {1} {2:6.3f} GHz'.format(aiamap.wavelength.value, observatory, (bfreqghz + efreqghz) / 2.0) else: title = 'AIA {0:.0f}'.format(aiamap.wavelength.value) aiamap.plot(axes=ax4) ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12) aiamap.draw_limb() aiamap.draw_grid() aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) aiamap.plot(axes=ax6) ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12) aiamap.draw_limb() aiamap.draw_grid() aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) if rmap: ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=clevels1 * np.nanmax(rmap1.data), cmap=cm.jet) ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=clevels2 * np.nanmax(rmap2.data), cmap=cm.RdBu) ax4.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'), verticalalignment='bottom', horizontalalignment='left', transform=ax4.transAxes, color='k', fontsize=10) ax6.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'), verticalalignment='bottom', horizontalalignment='left', transform=ax6.transAxes, color='k', fontsize=10) else: title = '{0} {1:6.3f} GHz'.format(observatory, (bfreqghz + efreqghz) / 2.0) rmap1.plot(axes=ax4, cmap=cm.jet) ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12) rmap1.draw_limb() rmap1.draw_grid() rmap1.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) rmap2.plot(axes=ax6, cmap=cm.RdBu) ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12) rmap2.draw_limb() rmap2.draw_grid() # ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap1.data), # cmap=cm.gray) # ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap2.data), # cmap=cm.gray) rmap2.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) ax4.set_xlim(-1200, 1200) ax4.set_ylim(-1200, 1200) ax6.set_xlim(-1200, 1200) ax6.set_ylim(-1200, 1200) try: subrmap1 = rmap1.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) subrmap2 = rmap2.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) except: bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=rmap1.coordinate_frame) tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=rmap1.coordinate_frame) subrmap1 = rmap1.submap(bl, tr) subrmap2 = rmap2.submap(bl, tr) XX, YY = np.meshgrid(np.arange(subrmap1.data.shape[1]), np.arange(subrmap1.data.shape[0])) try: subrmapx, subrmapy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix) except: subrmapxy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix) subrmapx = subrmapxy.Tx subrmapy = subrmapxy.Ty if 'aiamap' in vars(): try: subaiamap = aiamap.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) except: bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=aiamap.coordinate_frame) tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=aiamap.coordinate_frame) subaiamap = aiamap.submap(bl, tr) subaiamap.plot(axes=ax5, title='') subaiamap.draw_limb() subaiamap.draw_grid() subaiamap.plot(axes=ax7, title='') subaiamap.draw_limb() subaiamap.draw_grid() ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.jet) ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.RdBu) # subaiamap.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) else: subrmap1.plot(axes=ax5, cmap=cm.jet, title='') subrmap1.draw_limb() subrmap1.draw_grid() subrmap2.plot(axes=ax7, cmap=cm.RdBu, title='') subrmap2.draw_limb() subrmap2.draw_grid() # ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, # levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.gray) # ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, # levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.gray) # subrmap1.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) # subrmap2.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) ax5.set_xlim(xyrange[0]) ax5.set_ylim(xyrange[1]) ax5.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom', horizontalalignment='left', transform=ax5.transAxes, color='k', fontsize=10) ax7.set_xlim(xyrange[0]) ax7.set_ylim(xyrange[1]) ax7.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom', horizontalalignment='left', transform=ax7.transAxes, color='k', fontsize=10) fig.show()
def mk_qlook_image(trange, doimport=False, docalib=False, ncpu=10, twidth=12, stokes=None, antenna='0~12', #imagedir=None, spws=['1~3','4~6','7~9','10~13','14~18','19~28'],verbose=False): imagedir=None, spws=['1~5','6~10','11~15','16~25'], toTb=True, overwrite=True, doslfcal=False, verbose=False): ''' trange: can be 1) a single Time() object: use the entire day 2) a range of Time(), e.g., Time(['2017-08-01 00:00','2017-08-01 23:00']) 3) a single or a list of UDBms file(s) 4) None -- use current date Time.now() ''' if type(trange) == Time: mslist = trange2ms(trange=trange, doimport=doimport) vis = mslist['ms'] tsts = [l.to_datetime() for l in mslist['tstlist']] subdir = [tst.strftime("%Y/%m/%d/") for tst in tsts] if type(trange) == str: try: date = Time(trange) mslist = trange2ms(trange=trange, doimport=doimport) vis = mslist['ms'] except: vis = [trange] subdir = ['/'] for idx, f in enumerate(vis): if f[-1] == '/': vis[idx] = f[:-1] if not stokes: stokes = 'XX' if not imagedir: imagedir='./' imres = {'Succeeded': [], 'BeginTime': [], 'EndTime': [], 'ImageName': [], 'Spw': [], 'Vis': []} for n, msfile in enumerate(vis): msfilebs=os.path.basename(msfile) imdir = imagedir + subdir[n] if not os.path.exists(imdir): os.makedirs(imdir) if doslfcal: slfcalms = './'+msfilebs+'.xx' split(msfile,outputvis=slfcalms,datacolumn='corrected',correlation='XX') for spw in spws: spwran = [s.zfill(2) for s in spw.split('~')] freqran = [int(s)*0.5+2.9 for s in spw.split('~')] cfreq=np.mean(freqran) bmsz=max(150./cfreq,20.) uvrange='<10klambda' if doslfcal: slfcal_img = './'+msfilebs+'.slf.spw'+spw.replace('~','-')+'.slfimg' slfcal_tb = './'+msfilebs+'.slf.spw'+spw.replace('~','-')+'.slftb' try: clean(vis=slfcalms, antenna=antenna, imagename=slfcal_img, spw=spw, mode='mfs', timerange='', imagermode='csclean', psfmode='clark', imsize=[512,512], cell=['5arcsec'], niter=100, gain=0.05, stokes='I', weighting='natural', restoringbeam=[str(bmsz)+'arcsec'], pbcor=False, interactive=False, usescratch=True) except: print 'error in cleaning spw: '+spw break gaincal(vis=slfcalms, refant='0',antenna=antenna,caltable=slfcal_tb,spw=spw, uvrange='',\ gaintable=[],selectdata=True,timerange='',solint='600s',gaintype='G',calmode='p',\ combine='',minblperant=3,minsnr=2,append=False) if not os.path.exists(slfcal_tb): print 'No solution found in spw: '+spw break else: clearcal(slfcalms) delmod(slfcalms) applycal(vis=slfcalms,gaintable=[slfcal_tb],spw=spw,selectdata=True,\ antenna=antenna,interp='nearest',flagbackup=False,applymode='calonly',calwt=False) msfile=slfcalms if cfreq < 10.: imsize=512 cell=['5arcsec'] else: imsize=1024 cell=['2.5arcsec'] if len(spwran) == 2: spwstr = spwran[0]+'~'+spwran[1] else: spwstr = spwran[0] restoringbeam=['{0:.1f}arcsec'.format(bmsz)] imagesuffix='.spw'+spwstr.replace('~','-') if cfreq > 10.: antenna=antenna+';!0&1;!0&2' #deselect the shortest baselines res=ptclean(vis=msfile, imageprefix=imdir, imagesuffix=imagesuffix, twidth=twidth, uvrange=uvrange, spw=spw, ncpu=ncpu, niter=1000, gain=0.05, antenna=antenna,imsize=imsize, cell=cell, stokes=stokes, doreg=True, usephacenter=False, overwrite=overwrite, toTb=toTb, restoringbeam=restoringbeam, uvtaper=True,outertaper=['30arcsec']) if res: imres['Succeeded'] += res['Succeeded'] imres['BeginTime'] += res['BeginTime'] imres['EndTime'] += res['EndTime'] imres['ImageName'] += res['ImageName'] imres['Spw'] += [spwstr]*len(res['ImageName']) imres['Vis'] += [msfile]*len(res['ImageName']) else: return None #save it for debugging purposes np.savez('imres.npz',imres=imres) return imres