Beispiel #1
0
    def cache(self, model: clgen.Model):
        """
        Return sampler cache.

        Parameters
        ----------
        model : clgen.Model
            CLgen model.

        Returns
        -------
        labm8
            FSCache: Cache.
        """
        sampler_model_hash = crypto.sha1_str(self.hash + model.hash)

        cache = clgen.mkcache("sampler", sampler_model_hash)

        # validate metadata against cache
        self.stats = {
            "time": 0,
            "progress": 0
        }
        meta = deepcopy(self.to_json())
        if cache.get("META"):
            cached_meta = jsonutil.read_file(cache["META"])

            if "stats" in cached_meta:
                self.stats = cached_meta["stats"]
                del cached_meta["stats"]

            if "created" in cached_meta["sampler"]:
                del cached_meta["sampler"]["created"]
            del meta["sampler"]["created"]

            if "min_samples" in cached_meta["sampler"]:
                del cached_meta["sampler"]["min_samples"]
            del meta["sampler"]["min_samples"]

            if "min_kernels" in cached_meta["sampler"]:
                del cached_meta["sampler"]["min_kernels"]
            del meta["sampler"]["min_kernels"]

            if meta != cached_meta:
                raise clgen.InternalError("sampler metadata mismatch")
        else:
            self._flush_meta(cache)

        return cache
Beispiel #2
0
    def from_json(corpus_json: dict) -> 'Corpus':
        """
        Instantiate Corpus from JSON.

        Parameters
        ----------
        corpus_json : dict
            Specification.

        Returns
        -------
        Corpus
            Insantiated corpus.
        """
        path = corpus_json.pop("path", None)
        uid = corpus_json.pop("id", None)
        language = clgen.Language.from_str(corpus_json.get("language"))

        if path:
            path = unpack_directory_if_needed(fs.abspath(path))
            if not fs.isdir(path):
                raise clgen.UserError(
                    "Corpus path '{}' is not a directory".format(path))

            dirhashcache = DirHashCache(clgen.cachepath("dirhash.db"), 'sha1')
            uid = prof.profile(dirhashcache.dirhash, path)
        elif uid:
            cache_path = clgen.mkcache("contentfiles",
                                       f"{language}-{uid}").path
            if not fs.isdir(cache_path):
                raise clgen.UserError(
                    "Corpus content {} not found".format(uid))
        else:
            raise clgen.UserError("No corpus path or ID provided")

        if "stats" in corpus_json:  # ignore stats
            del corpus_json["stats"]

        if "contentfiles" in corpus_json:
            del corpus_json["contentfiles"]

        return prof.profile(Corpus, uid, path=path, **corpus_json)
Beispiel #3
0
    def __init__(self, contentid: str, path: str=None, **opts):
        """
        Instantiate a corpus.

        If this is a new corpus, a number of files will be created, which may
        take some time.

        Parameters
        ----------
        contentid : str
            ID of corpus content.
        path : str, optional
            Path to corpus.
        **opts
            Keyword options.
        """
        # Validate options
        for key in opts.keys():
            if key not in DEFAULT_CORPUS_OPTS:
                raise clgen.UserError(
                    "Unsupported corpus option '{}'. Valid keys: {}".format(
                        key, ','.join(sorted(DEFAULT_CORPUS_OPTS.keys()))))

        self.opts = deepcopy(DEFAULT_CORPUS_OPTS)
        types.update(self.opts, opts)
        self.opts["id"] = contentid

        # check that contentid exists
        self.language = clgen.Language.from_str(opts.get("language"))
        if (path is None and
            not fs.isdir(clgen.cachepath("contentfiles", f"{self.language}-{contentid}"))):
            raise clgen.UserError("corpus {self.language}-{contentid} not found"
                                  .format(**vars()))

        self.contentid = contentid
        self.contentcache = clgen.mkcache("contentfiles", f"{self.language}-{contentid}")
        self.kernels_db = self.contentcache.keypath('kernels.db')

        self.hash = self._hash(contentid, self.opts)
        self.cache = clgen.mkcache("corpus", f"{self.language}-{self.hash}")

        log.debug("contentfiles {self.contentid}".format(**vars()))
        log.debug("corpus {hash}".format(hash=self.hash))

        # validate metadata against cache
        self.stats = {
            "preprocess_time": 0
        }
        meta = deepcopy(self.to_json())
        if self.cache.get("META"):
            cached_meta = jsonutil.read_file(self.cache["META"])
            self.stats = cached_meta["stats"]  # restore stats

            if "created" in cached_meta:
                del cached_meta["created"]
            del meta["created"]

            if "stats" in cached_meta:
                del cached_meta["stats"]
            del meta["stats"]

            if meta != cached_meta:
                raise clgen.InternalError("corpus metadata mismatch")
        else:
            self._flush_meta()

        with self.lock.acquire(replace_stale=True):
            self._create_files(path)
Beispiel #4
0
    def __init__(self, corpus: clgen.Corpus, **opts):
        """
        Instantiate model.

        Parameters
        ----------
        corpus : clgen.Corpus
            Corpus instance.
        **opts
            Training options.
        """
        assert(isinstance(corpus, clgen.Corpus))

        def _hash(corpus: clgen.Corpus, opts: dict) -> str:
            """ compute model hash """
            hashopts = deepcopy(opts)
            del hashopts["created"]
            del hashopts["train_opts"]["epochs"]
            return crypto.sha1_list(corpus.hash, *types.dict_values(hashopts))

        # Validate options
        for key in opts:
            if key not in DEFAULT_MODEL_OPTS:
                raise clgen.UserError(
                    "Unsupported model option '{}'. Valid keys: {}".format(
                        key, ','.join(sorted(DEFAULT_MODEL_OPTS.keys()))))

        # set properties
        self.opts = types.update(deepcopy(DEFAULT_MODEL_OPTS), opts)
        self.corpus = corpus
        self.hash = _hash(self.corpus, self.opts)
        self.cache = clgen.mkcache("model", f"{corpus.language}-{self.hash}")

        log.debug("model", self.hash)

        # validate metadata against cache, and restore stats
        self.stats = {
            "epoch_times": [],
            "epoch_costs": [],
            "epoch_batches": []
        }
        meta = deepcopy(self.to_json())
        if self.cache.get("META"):
            cached_meta = jsonutil.read_file(self.cache["META"])
            self.stats = cached_meta["stats"]  # restore stats

            if "created" in cached_meta:
                del cached_meta["created"]
            del meta["created"]

            if "created" in cached_meta["corpus"]:
                del cached_meta["corpus"]["created"]
            del meta["corpus"]["created"]

            if "stats" in cached_meta:
                del cached_meta["stats"]
            del meta["stats"]

            if "epochs" in cached_meta["train_opts"]:
                del cached_meta["train_opts"]["epochs"]
            del meta["train_opts"]["epochs"]

            if meta != cached_meta:
                log.error("Computed META:", jsonutil.format_json(meta))
                raise clgen.InternalError(
                    "metadata mismatch in model %s" % self.cache["META"])
        else:
            self._flush_meta()