def evaluate(args): config = Config().from_file(args["config"]) from data.interface_lol import prepare_data_loader_4_lol (train_loader, dev_loader, test_loader, test_4d_loader) = prepare_data_loader_4_lol(args, args["data_path"], training=False) from models.interface_lol import build_model_fn_4_lol model_fn = build_model_fn_4_lol(args, config) # for dev set scf = loll.LoLLearner().build( args, config, os.path.join(ENV_PATH, "lol_{}_trained".format(args["dataset"])), args["run_id"]) if args["run_dev_testing"]: print("Development Set ...") eval_spec = model_fn(ModeKeys.EVAL, dev_loader) scf.evaluate(eval_spec) if args['except_domain'] != "" and args["run_except_4d"]: print("Test Set on 4 domains...") eval_spec = model_fn(ModeKeys.EVAL, test_4d_loader) scf.evaluate(eval_spec) # for test set print("Test Set ...") eval_spec = model_fn(ModeKeys.TEST, test_loader) scf.evaluate(eval_spec)
def evaluate(args): config = Config().from_file(args["config"]) if args["dataset"] == "mwoz20": from data.mwoz20.interface_meta_rl_lb import prepare_data_loader_4_meta_rl (train_loader, dev_loader, test_loader, test_4d_loader) = prepare_data_loader_4_meta_rl(args, args["data_path"], training=False) from models.mwoz20.interface_meta_rl2 import build_model_fn_4_meta_rl model_fn = build_model_fn_4_meta_rl(args, config) # for dev set scf = meta_rl2.MetaRLLearner().build( args, config, os.path.join(ENV_PATH, "meta_rl2_trained"), args["run_id"]) if args["run_dev_testing"]: print("Development Set ...") eval_spec = model_fn(ModeKeys.EVAL, dev_loader) scf.evaluate(eval_spec) if args['except_domain'] != "" and args["run_except_4d"]: print("Test Set on 4 domains...") eval_spec = model_fn(ModeKeys.EVAL, test_4d_loader) scf.evaluate(eval_spec) # for test set print("Test Set ...") eval_spec = model_fn(ModeKeys.TEST, test_loader) scf.evaluate(eval_spec) else: raise Exception("Unimplemented")
def train(args): config = Config().from_file(args["config"]) from data.interface_lol import prepare_data_loader_4_lol (train_loader, dev_loader, test_loader, test_4d_loader) = prepare_data_loader_4_lol( args, args["data_path"], training=True) from models.interface_lol_c2f import build_model_fn_4_lol model_fn = build_model_fn_4_lol(args, config) train_spec = model_fn(ModeKeys.TRAIN, train_loader) eval_spec = model_fn(ModeKeys.EVAL, dev_loader) scf = loll.LoLLearner().build( args, config, os.path.join( ENV_PATH, "lol_{}_trained".format(args["dataset"])), args["run_id"]) scf.train(train_spec, eval_spec)
def train(args): config = Config().from_file(args["config"]) if args["dataset"] == "mwoz20": from data.mwoz20.interface_meta_rl_lb import prepare_data_loader_4_meta_rl (train_loader, dev_loader, test_loader, test_4d_loader) = prepare_data_loader_4_meta_rl(args, args["data_path"], training=True) from models.mwoz20.interface_meta_rl2 import build_model_fn_4_meta_rl model_fn = build_model_fn_4_meta_rl(args, config) train_spec = model_fn(ModeKeys.TRAIN, train_loader) eval_spec = model_fn(ModeKeys.EVAL, dev_loader) scf = meta_rl2.MetaRLLearner().build( args, config, os.path.join(ENV_PATH, "meta_rl2_trained"), args["run_id"]) scf.train(train_spec, eval_spec) else: raise Exception("Unimplemented")