def xi_C_at_r(radii, r_A, r_B, beta_ex, xi_2h): """Halo-matter correlation function with halo exclusion incorporated. Args: radii (float or array-like): Radii of the profile in Mpc/h r_A (float): radius of first correction term in Mpc/h r_B (float): radius of second correction term in Mpc/h beta_ex (float): width parameter for exclusion terms xi_2h (float or array-like): 2-halo term of the exclusion profile Returns: float or array-like: correction term for the exclusion profile """ radii = np.asarray(radii) xi_2h = np.asarray(xi_2h) scalar_input = False if radii.ndim == 0: radii = radii[None] #makes r 1D scalar_input = True if radii.ndim > 1: raise Exception("radii cannot be a >1D array.") if len(radii) != len(xi_2h): raise Exception("len(r) must equal len(xi_2h)") lib = cluster_toolkit._lib xi_C = np.zeros_like(radii) lib.xi_C_at_r_arr(dc(radii), len(radii), r_A, r_B, beta_ex, dc(xi_2h), dc(xi_C)) if scalar_input: return np.squeeze(xi_C) return xi_C
def theta_at_r(radii, rt, beta): """Truncation function. Args: radii (float or array-like): Radii of the profile in Mpc/h rt (float): truncation radius in Mpc/h beta (float): width of the truncation distribution (erfc) in Mpc/h Returns: float or array-like: Truncation function """ radii = np.asarray(radii) scalar_input = False if radii.ndim == 0: radii = radii[None] #makes r 1D scalar_input = True if radii.ndim > 1: raise Exception("radii cannot be a >1D array.") theta = np.zeros_like(radii) cluster_toolkit._lib.theta_erfc_at_r_arr(dc(radii), len(radii), rt, beta, dc(theta)) if scalar_input: return np.squeeze(theta) return theta
def xi_2h_exclusion_at_r(radii, r_eff, beta_eff, bias, xi_mm): """2-halo term in the halo-matter correlation function using halo exclusion theory. Args: radii (float or array-like): Radii of the profile in Mpc/h r_eff (float): effective radius for 2-halo subtraction in Mpc/h beta_eff (float): width for effective radius truncation bias (float): halo bias at large scales xi_mm (float or array-like): matter correlation function. Must have same shape as the radii. Returns: float or array-like: 2-halo of the exclusion profile at each radii """ radii = np.asarray(radii) xi_mm = np.asarray(xi_mm) scalar_input = False if radii.ndim == 0: radii = radii[None] #makes r 1D scalar_input = True if radii.ndim > 1: raise Exception("radii cannot be a >1D array.") if len(radii) != len(xi_mm): raise Exception("len(r) must equal len(xi_mm)") lib = cluster_toolkit._lib xi_2h = np.zeros_like(radii) lib.xi_2h_at_r_arr(dc(radii), len(radii), r_eff, beta_eff, bias, dc(xi_mm), dc(xi_2h)) if scalar_input: return np.squeeze(xi_2h) return xi_2h
def xi_hm_exclusion_at_r(radii, Mass, conc, alpha, rt, beta, r_eff, beta_eff, r_A, r_B, beta_ex, bias, xi_mm, Omega_m, delta=200): """Halo-matter correlation function with halo exclusion incorporated. Args: radii (float or array-like): Radii of the profile in Mpc/h Mass (float): Mass in Msun/h conc (float): concentration of the 1-halo profile alpha (float): Einasto parameter rt (float): truncation radius in Mpc/h beta (float): width of the truncation distribution (erfc) in Mpc/h r_eff (float): effective radius for 2-halo subtraction in Mpc/h beta_eff (float): width for effective radius truncation r_A (float): radius of first correction term in Mpc/h r_B (float): radius of second correction term in Mpc/h beta_ex (float): width parameter for exclusion terms bias (float): linear halo bias xi_mm (float or array-like): matter correlation function. same shape as radii Omega_m (float): matter density fraction delta (int): halo overdensity. Default is 200 Returns: float or array-like: exclusion profile at each radii """ radii = np.asarray(radii) xi_mm = np.asarray(xi_mm) scalar_input = False if radii.ndim == 0: radii = radii[None] #makes r 1D scalar_input = True if radii.ndim > 1: raise Exception("radii cannot be a >1D array.") if len(radii) != len(xi_mm): raise Exception("len(r) must equal len(xi_mm)") lib = cluster_toolkit._lib xi_hm = np.zeros_like(radii) lib.xi_hm_exclusion_at_r_arr(dc(radii), len(radii), Mass, conc, alpha, rt, beta, r_eff, beta_eff, r_A, r_B, beta_ex, bias, dc(xi_mm), delta, Omega_m, dc(xi_hm)) if scalar_input: return np.squeeze(xi_hm) return xi_hm
def xi_1h_exclusion_at_r(radii, Mass, conc, alpha, rt, beta, Omega_m, delta=200): """Halo-matter correlation function with halo exclusion incorporated, but just the 1-halo term. Args: radii (float or array-like): Radii of the profile in Mpc/h Mass (float): Mass in Msun/h conc (float): concentration of the 1-halo profile alpha (float): Einasto parameter rt (float): truncation radius in Mpc/h beta (float): width of the truncation distribution (erfc) in Mpc/h Omega_m (float): Matter density fraction delta (float): halo overdensity; default is 200 Returns: float or array-like: 1-halo of the exclusion profile at each radii """ radii = np.asarray(radii) scalar_input = False if radii.ndim == 0: radii = radii[None] #makes r 1D scalar_input = True if radii.ndim > 1: raise Exception("radii cannot be a >1D array.") lib = cluster_toolkit._lib xi_1h = np.zeros_like(radii) lib.xi_1h_at_r_arr(dc(radii), len(radii), Mass, conc, alpha, rt, beta, delta, Omega_m, dc(xi_1h)) if scalar_input: return np.squeeze(xi_1h) return xi_1h