Beispiel #1
0
def get_max_weighted_clusters(graph, node_name):
    maxval = 0
    maxclustids = []
    cdict = {}
    for n, nbrs in graph.graf.adjacency_iter():
        if n == node_name:
            for nbr, eattr in nbrs.iteritems():
                weight = eattr['weight']
                #print graph.graf.node[nbr]
                cl = graph.graf.node[nbr]['CLID']
                if cdict.__contains__(cl):
                    cdict[cl] += weight
                else:
                    cdict[cl] = weight
    for cl, weight in cdict.iteritems():
        if maxval < weight:
            maxval = weight
            maxclustids = [cl]
        elif maxval == weight:
            maxclustids.append(cl)
    clusterlist = []
    for clust in clusterglobals.clusters_list:
        if clust.label in maxclustids:
            clusterlist.append(clusterglobals.get_cluster(clust.label))
    #return maxclustids
    return clusterlist
Beispiel #2
0
def random_classification(graph):
    for node in graph.graf.nodes():
        clusters_li = get_max_weighted_clusters(graph, node)
        best_cluster = random_cluster(clusters_li)
        if best_cluster:
            old_cluster_id = graph.graf.node[node]['CLID']
            tags = graph.graf.node[node]['tags']
            old_cluster = get_cluster(old_cluster_id)
            st = old_cluster.remove_node(graph, node)
            if st == None:
                replace_cluster(old_cluster)
            else:
                replace_cluster(old_cluster, remove = True)
            best_cluster.add_node(node, tags)
            replace_cluster(best_cluster)
            change_node_cluster(graph, node, best_cluster.label)
        else:
            pass