class Inferencer:
    def __init__(self, path, small):
        self.net = Net()
        self.path = path
        self.small = small
        self.net.load_state_dict(torch.load(path))

    def change_format(self, board):
        np_onehot = self.to_one_hot(board)
        tensor_onthot = torch.from_numpy(np_onehot).type(torch.float32)
        return tensor_onthot


    def inference(self, board):
        with torch.no_grad():
            tensor = self.change_format(board)
            output = self.net(tensor)
            _, predicted = torch.max(output.data, 1)
        return self.transform(predicted.item())


    def transform(self, value):
        if (self.small):
            return value * 3
        else:
            return value * 30

    def to_one_hot(self, board):
        onehot = np.zeros((1, NUM_OF_COLOR + 1, ROW_DIM, COLUMN_DIM))
        for row in range(ROW_DIM):
            for col in range(COLUMN_DIM):
                color = board[row][col]
                onehot[0, color, row, col] = 1
        return onehot
Beispiel #2
0
                red_stride=rStride,
                nonred_stride=nStride,
                red_out=rOut,
                nonred_out=nOut,
                d="cuda:0" if enableCuda else "cpu")

    model.double()
    if enableCuda:
        model.cuda()

    # declare optimizer and gradient and loss function
    optimizer = optim.Adadelta(model.parameters(), lr=lr_rate)
    loss = torch.nn.MSELoss(reduction='mean')

    print("Loading model")
    model.load_state_dict(torch.load(modelFile))

    print("Starting Testing")
    out_nrgs, test_val = model.test(images, energies, loss)
    print("Testing Finished")

    out_nrgs = convertToNumpy(out_nrgs, enableCuda)
    # scaling energies to mHa
    energies = 1000 * energies
    out_nrgs = 1000 * out_nrgs

    # calculating median absolute error for energies in range (100-400 mHa)
    abs_err = abs(np.sort(energies) - np.sort(out_nrgs))
    median_err = np.median(abs_err)

    with open(outdir + "median_abs_error.txt", "w+") as f:
Beispiel #3
0
def get_chars(path_name):
    gcs = storage.Client()

    bucket = gcs.get_bucket('mail-scanner-bucket')
    blob = bucket.blob(path_name)
    blob.download_to_filename('image.jpg')
    image = cv2.imread('image.jpg')

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    edged = cv2.Canny(gray, 100, 200)

    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
                            cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]

    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        if len(approx) == 4:
            screenCnt = approx
            break

    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)

    warped = four_point_transform(
        image,
        screenCnt.reshape(4, 2) * (image.shape[0] / 480.0))

    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)

    warped = cv2.adaptiveThreshold(warped, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                   cv2.THRESH_BINARY, 17, 4)

    image = imutils.resize(warped, width=500)

    # Remove Salt and pepper noise
    saltpep = cv2.fastNlMeansDenoising(image, None, 9, 13)

    # blur
    blured = cv2.blur(saltpep, (3, 3))

    # binary
    ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)

    # dilation
    kernel = np.ones((5, 100), np.uint8)
    img_dilation = cv2.dilate(thresh, kernel, iterations=1)

    # find contours
    im2, ctrs, hier = cv2.findContours(img_dilation.copy(), cv2.RETR_EXTERNAL,
                                       cv2.CHAIN_APPROX_SIMPLE)

    # sort contours
    sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[1])

    matrix = [[], [], []]

    for i, ctr in enumerate(sorted_ctrs):

        # Get bounding box
        x, y, w, h = cv2.boundingRect(ctr)

        # Getting ROI
        roi = image[y:y + h, x:x + w]

        im = cv2.resize(roi, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC)
        ret_1, thresh_1 = cv2.threshold(im, 127, 255, cv2.THRESH_BINARY_INV)
        im, ctrs_1, hier = cv2.findContours(thresh_1, cv2.RETR_EXTERNAL,
                                            cv2.CHAIN_APPROX_SIMPLE)

        # sort contours
        sorted_ctrs_1 = sorted(ctrs_1,
                               key=lambda ctr: cv2.boundingRect(ctr)[0])
        count, p_height = 0, 0
        for j, ctr_1 in enumerate(sorted_ctrs_1):
            # Get bounding box
            x_1, y_1, w_1, h_1 = cv2.boundingRect(ctr_1)
            if w_1 > 50 and h_1 > 50:
                # Getting ROI
                roi_1 = thresh_1[y_1:y_1 + h_1, x_1:x_1 + w_1]

                if j != 0:
                    # print(h_1, p_height)
                    if p_height < h_1:
                        count = 0
                    matrix[count].append(roi_1)
                    p_height = h_1

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = Net()
    model.load_state_dict(
        torch.load('letter_model.pt', map_location=torch.device(device)))

    p = transforms.Compose([
        transforms.Resize((28, 28)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, ), (0.5, ))
    ])

    real_pred = ''
    for img in matrix[0]:
        img = Image.fromarray(img)
        img = p(img)
        img = img.view(1, 28, 28)
        img = img.unsqueeze(0)

        img = model(img)
        prediction = list(img.cpu().detach().numpy()[0])
        classes = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
        max_pred = prediction.index(max(prediction))
        real_pred += classes[max_pred]

    return real_pred
Beispiel #4
0
testset = torchvision.datasets.CIFAR10(root='./data',
                                       train=False,
                                       download=True,
                                       transform=transform)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=4,
                                         shuffle=False,
                                         num_workers=2)

# dataiter = iter(testloader)
# images, labels = dataiter.next()
# print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

net = Net()
net.load_state_dict(torch.load(PATH))

# outputs = net(images)
# _, predicted = torch.max(outputs, 1)
# print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' %
Beispiel #5
0
import torch
import torch.onnx
from cnn import Net

#TODO Get this working
# https://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html
# Online web service that enhances photography.

# A model class instance (class not shown)
model = Net()
model.train(False)

# Load the weights from a file (.pth usually)
state_dict = torch.load("model.pth")

# Load the weights now into a model net architecture defined by our class
print("loading model")
model.load_state_dict(state_dict['model_state_dict'])

# Input to the model
x = torch.randn(10, 3, 224, 224, requires_grad=True)

# Export the model
torch_out = torch.onnx._export(
    model,  # model being run
    x,  # model input (or a tuple for multiple inputs)
    "model.onnx",  # where to save the model (can be a file or file-like object)
    export_params=True
)  # store the trained parameter weights inside the model file
print("exported model")
Beispiel #6
0
def main():

    parser = argparse.ArgumentParser(description='Prediction of TCR binding to peptide-MHC complexes')

    parser.add_argument('--infile', type=str,
                        help='input file for training')
    parser.add_argument('--indepfile', type=str, default=None,
                        help='independent test file')
    parser.add_argument('--blosum', type=str, default='data/BLOSUM50',
                        help='file with BLOSUM matrix')
    parser.add_argument('--batch_size', type=int, default=50, metavar='N',
                        help='batch size')
    parser.add_argument('--model_name', type=str, default='original.ckpt',
                        help = 'if train is True, model name to be saved, otherwise model name to be loaded')
    parser.add_argument('--epoch', type = int, default=200, metavar='N',
                        help='number of epoch to train')
    parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
                        help='learning rate')
    parser.add_argument('--cuda', type = str2bool, default=True,
                        help = 'enable cuda')
    parser.add_argument('--seed', type=int, default=7405,
                        help='random seed')
    parser.add_argument('--mode', default = 'train', type=str,
                        help = 'train or test')
    parser.add_argument('--model', type=str, default='cnn',
                        help='cnn, resnet')
    
    args = parser.parse_args()

    if args.mode is 'test':
        assert args.indepfile is not None, '--indepfile is missing!'
        
    ## cuda
    if torch.cuda.is_available() and not args.cuda:
        print("WARNING: You have a CUDA device, so you should probably run with --cuda")
    args.cuda = (args.cuda and torch.cuda.is_available()) 
    device = torch.device('cuda' if args.cuda else 'cpu')

    ## set random seed
    seed = args.seed
    torch.manual_seed(seed)
    if args.cuda:
        torch.cuda.manual_seed(seed) if args.cuda else None

    # embedding matrix
    embedding = load_embedding(args.blosum)
      
    ## read data
    X_pep, X_tcr, y = data_io_tf.read_pTCR(args.infile)
    y = np.array(y)

    n_total = len(y)
    n_train = int(round(n_total * 0.8))
    n_valid = int(round(n_total * 0.1))
    n_test = n_total - n_train - n_valid
    idx_shuffled = np.arange(n_total); np.random.shuffle(idx_shuffled)
    idx_train, idx_valid, idx_test = idx_shuffled[:n_train], \
                                     idx_shuffled[n_train:(n_train+n_valid)], \
                                     idx_shuffled[(n_train+n_valid):]

    ## define dataloader
    train_loader = define_dataloader(X_pep[idx_train], X_tcr[idx_train], y[idx_train], None,
                                     None, None,
                                     batch_size=args.batch_size, device=device)
    valid_loader = define_dataloader(X_pep[idx_valid], X_tcr[idx_valid], y[idx_valid], None,
                                     maxlen_pep=train_loader['pep_length'],
                                     maxlen_tcr=train_loader['tcr_length'],
                                     batch_size=args.batch_size, device=device)
    test_loader = define_dataloader(X_pep[idx_test], X_tcr[idx_test], y[idx_test], None,
                                    maxlen_pep=train_loader['pep_length'],
                                    maxlen_tcr=train_loader['tcr_length'],
                                    batch_size=args.batch_size, device=device)
        
    ## read indep data
    if args.indepfile is not None:
        X_indep_pep, X_indep_tcr, y_indep = data_io_tf.read_pTCR(args.indepfile)
        y_indep = np.array(y_indep)
        indep_loader = define_dataloader(X_indep_pep, X_indep_tcr, y_indep, None,
                                         maxlen_pep=train_loader['pep_length'],
                                         maxlen_tcr=train_loader['tcr_length'],
                                         batch_size=args.batch_size, device=device)

    if args.model == 'cnn':
        
        from cnn import Net
        
    #if args.model == 'resnet':
    #
    #    from resnet import Net
    #    Net = models.resnet18
        
    else:
        raise ValueError('unknown model name')
    
    ## define model
    model = Net(embedding, train_loader['pep_length'], train_loader['tcr_length']).to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    if 'models' not in os.listdir('.'):
        os.mkdir('models')
    if 'result' not in os.listdir('.'):
        os.mkdir('result')

    ## fit model        
    if args.mode == 'train' : 
            
        model_name = check_model_name(args.model_name)
        model_name = check_model_name(model_name, './models')
        model_name = args.model_name

        wf_open = open('result/'+os.path.splitext(os.path.basename(args.infile))[0]+'_'+os.path.splitext(os.path.basename(args.model_name))[0]+'_valid.csv', 'w')
        wf_colnames = ['loss', 'accuracy',
                       'precision1', 'precision0',
                       'recall1', 'recall0',
                       'f1macro','f1micro', 'auc']
        wf = csv.DictWriter(wf_open, wf_colnames, delimiter='\t')

        t0 = time.time()
        for epoch in range(1, args.epoch + 1):
            
            train(args, model, device, train_loader['loader'], optimizer, epoch)

            ## evaluate performance
            perf_train = get_performance_batchiter(train_loader['loader'], model, device)
            perf_valid = get_performance_batchiter(valid_loader['loader'], model, device)

            ## print performance
            print('Epoch {} TimeSince {}\n'.format(epoch, timeSince(t0)))
            print('[TRAIN] {} ----------------'.format(epoch))
            print_performance(perf_train)
            print('[VALID] {} ----------------'.format(epoch))
            print_performance(perf_valid, writeif=True, wf=wf)

        ## evaluate and print test-set performance 
        print('[TEST ] {} ----------------'.format(epoch))
        perf_test = get_performance_batchiter(test_loader['loader'], model, device)
        print_performance(perf_test)

        model_name = './models/' + model_name
        torch.save(model.state_dict(), model_name)
            
    elif args.mode == 'test' : 
        
        model_name = args.model_name

        assert model_name in os.listdir('./models')
        
        model_name = './models/' + model_name
        model.load_state_dict(torch.load(model_name))

        ## evaluate and print independent-test-set performance
        print('[INDEP] {} ----------------') 
        perf_indep = get_performance_batchiter(indep_loader['loader'], model, device)
        print_performance(perf_indep)

        ## write blackbox output
        wf_bb_open = open('data/testblackboxpred_' + os.path.basename(args.indepfile), 'w')
        wf_bb = csv.writer(wf_bb_open, delimiter='\t')
        write_blackbox_output_batchiter(indep_loader, model, wf_bb, device)

        wf_bb_open1 = open('data/testblackboxpredscore_' + os.path.basename(args.indepfile), 'w')
        wf_bb1 = csv.writer(wf_bb_open1, delimiter='\t')
        write_blackbox_output_batchiter(indep_loader, model, wf_bb1, device, ifscore=True)
        
    else :
        
        print('\nError: "--mode train" or "--mode test" expected')
Beispiel #7
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Visualization tool for CNN Pytorch model')
    parser.add_argument('--use_cuda',
                        action='store_true',
                        default=False,
                        help='enables CUDA training')
    parser.add_argument('--image', help='path to the image', required=True)
    parser.add_argument('--image_cls',
                        help='cllass of the image',
                        required=True)
    parser.add_argument('--load_weights',
                        help='path to saved model\'s file',
                        required=True)
    parser.add_argument(
        '--dataset',
        help='Path to dataset from which to load the images for visualizatiom')
    args = parser.parse_args()

    use_cuda = args.use_cuda and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    model = Net().to(device)
    model.load_state_dict(torch.load(args.load_weights))
    model.eval()

    image = np.array(Image.open(args.image)).astype(np.float32) / 255
    image_tensor = torch.tensor(image).permute(2, 0, 1)

    plot_pixelwise_gradients(model, image_tensor, args.image_cls)
    plot_occlusion_heatmap(image_tensor, args.image_cls)
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torch.optim as optim

from cnn import Net

bs = 16
model_name = 'cnn_adaptive_7.pt'

#load model
model = Net()
model.load_state_dict(torch.load('models/' + model_name))

#data
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
testset = torchvision.datasets.CIFAR10(root='./data',
                                       train=False,
                                       download=False,
                                       transform=transform)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=bs,
                                         shuffle=False,
                                         num_workers=2)
def capture_solve(input_image):
    # Grayscale and adaptive threshold
    img = cv2.GaussianBlur(input_image, (5, 5), 0)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    mask = np.zeros(gray.shape, np.uint8)
    kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))

    close = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, kernel1)
    div = np.float32(gray) / close
    isolate = np.uint8(cv2.normalize(div, div, 0, 255, cv2.NORM_MINMAX))
    res2 = cv2.cvtColor(isolate, cv2.COLOR_GRAY2BGR)
    thresh = cv2.adaptiveThreshold(isolate, 255, 0, 1, 19, 2)
    contour, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # Grab the biggest contour (the board)
    max_area = 0
    best_cnt = None
    for cnt in contour:
        area = cv2.contourArea(cnt)
        if area > 50000:
            if area > max_area:
                max_area = area
                best_cnt = cnt

    # Isolate board
    cv2.drawContours(mask, [best_cnt], 0, 255, -1)
    cv2.drawContours(mask, [best_cnt], 0, 0, 2)

    isolate = cv2.bitwise_and(isolate, mask)

    # === Use second order derivative filter to find the vertical and horizontal lines === #

    # Obtain vertical contours
    kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 10))
    dx = cv2.Sobel(isolate, cv2.CV_16S, 1, 0)
    dx = cv2.convertScaleAbs(dx)
    cv2.normalize(dx, dx, 0, 255, cv2.NORM_MINMAX)
    _, close = cv2.threshold(dx, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close, cv2.MORPH_DILATE, kernel_x, iterations=1)

    # Remove number contours, isolating vertical lines
    contour, _ = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x, y, w, h = cv2.boundingRect(cnt)
        if h / w > 5:
            cv2.drawContours(close, [cnt], 0, 255, -1)
        else:
            cv2.drawContours(close, [cnt], 0, 0, -1)

    close_x = cv2.morphologyEx(close, cv2.MORPH_CLOSE, None, iterations=2)

    # Obtain horizontal contours
    kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 2))
    dy = cv2.Sobel(isolate, cv2.CV_16S, 0, 2)
    dy = cv2.convertScaleAbs(dy)
    cv2.normalize(dy, dy, 0, 255, cv2.NORM_MINMAX)
    ret, close = cv2.threshold(dy, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close, cv2.MORPH_DILATE, kernel_y)

    # Remove number contours, isolating vertical lines
    contour, _ = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x, y, w, h = cv2.boundingRect(cnt)
        if w / h > 5:
            cv2.drawContours(close, [cnt], 0, 255, -1)
        else:
            cv2.drawContours(close, [cnt], 0, 0, -1)

    close_y = cv2.morphologyEx(close, cv2.MORPH_DILATE, None, iterations=2)

    # Get intersections
    isolate = cv2.bitwise_and(close_x, close_y)

    # Obtain centroids
    contour, _ = cv2.findContours(isolate, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    centroids = []
    for cnt in contour:
        mom = cv2.moments(cnt)
        (x, y) = int(mom['m10'] / mom['m00']), int(mom['m01'] / mom['m00'])
        cv2.circle(img, (x, y), 4, (0, 255, 0), -1)
        centroids.append((x, y))

    # Re-order centroids
    centroids = np.array(centroids, dtype=np.float32)
    c = centroids.reshape((100, 2))
    c2 = c[np.argsort(c[:, 1])]
    b = np.vstack([c2[i * 10:(i + 1) * 10][np.argsort(c2[i * 10:(i + 1) * 10, 0])] for i in range(10)])
    bm = b.reshape((10, 10, 2))

    # Apply perspective transform and warp to 450x450
    image = np.zeros((450, 450, 3), np.uint8)
    for i, j in enumerate(b):
        ri = i // 10
        ci = i % 10
        if ci != 9 and ri != 9:
            src = bm[ri:ri + 2, ci:ci + 2, :].reshape((4, 2))
            dst = np.array([[ci * 50, ri * 50],
                            [(ci + 1) * 50 - 1, ri * 50],
                            [ci * 50, (ri + 1) * 50 - 1],
                            [(ci + 1) * 50 - 1, (ri + 1) * 50 - 1]], np.float32)
            retval = cv2.getPerspectiveTransform(src, dst)
            warp = cv2.warpPerspective(res2, retval, (450, 450))
            image[
            ri * 50:(ri + 1) * 50 - 1,
            ci * 50:(ci + 1) * 50 - 1
            ] = warp[ri * 50:(ri + 1) * 50 - 1, ci * 50:(ci + 1) * 50 - 1].copy()

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)

    # Filter out all numbers and noise to isolate boxes
    cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    for c in cnts:
        area = cv2.contourArea(c)
        if area < 1000:
            cv2.drawContours(thresh, [c], -1, (0, 0, 0), -1)

    # Fix horizontal and vertical lines
    vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 5))
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, vertical_kernel, iterations=9)
    horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 1))
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, horizontal_kernel, iterations=4)

    invert = 255 - thresh
    cnts = cv2.findContours(invert, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    cnts, _ = contours.sort_contours(cnts, method="top-to-bottom")

    sudoku_rows = []
    row = []
    for (i, c) in enumerate(cnts, 1):
        area = cv2.contourArea(c)
        if area < 50000:
            row.append(c)
            if i % 9 == 0:
                (cnts, _) = contours.sort_contours(row, method="left-to-right")
                sudoku_rows.append(cnts)
                row = []

    squares = []
    for row in sudoku_rows:
        for cc in row:
            x, y, w, h = cv2.boundingRect(cc)
            squares.append(image[y:y + h, x:x + w])

    squares = np.reshape(squares, (-1, 9))
    board = np.zeros((9, 9))

    mean_list = []

    for x in squares:
        for box in x:
            gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY)
            img = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)
            denoise = ndimage.median_filter(img, 5)
            white_pix_count = np.count_nonzero(denoise)
            mean_list.append(white_pix_count)

    else:
        mean = np.mean(mean_list)

    for col, x in enumerate(squares):
        for row, box in enumerate(x):
            gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY)
            img = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)

            denoise = ndimage.median_filter(img, 5)
            white_pix_count = np.count_nonzero(denoise)

            if white_pix_count > mean:
                device = 'cuda' if torch.cuda.is_available() else 'cpu'

                model = Net()
                model.load_state_dict(torch.load('model.pth', map_location=torch.device(device)))
                model.eval()

                p = transforms.Compose([transforms.Resize((28, 28)),
                                        transforms.ToTensor(),
                                        transforms.Normalize((0.1307,), (0.3081,))])

                img = Image.fromarray(denoise)
                img = p(img)
                img = img.view(1, 28, 28)
                img = img.unsqueeze(0)

                output = model(img)
                prediction = list(output.cpu()[0])
                board[col][row] = prediction.index(max(prediction))

    solve(board)
    return board