Beispiel #1
0
def test_load_save_inputs(tmpdir):
    i1 = input_variable((1,2), name='i1')
    i2 = input_variable((2,1), name='i2')
    root_node = plus(i1, i2)
    input1 = [[[1,2]]]
    input2 = [[[[1],[2]]]]

    result = root_node.eval({i1: input1, i2: input2})
    expected = [[[[2,3],[3,4]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_i_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test specifying the input nodes by name
    loaded_result = loaded_node.eval({'i1': input1, 'i2': input2})
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval({'i1': input1, 'i2': input2})
    assert np.allclose(loaded_result, expected)
Beispiel #2
0
def test_load_save_inputs(tmpdir):
    i1 = input_variable((1, 2), name='i1')
    i2 = input_variable((2, 1), name='i2')
    root_node = plus(i1, i2)
    input1 = [[[1, 2]]]
    input2 = [[[[1], [2]]]]

    result = root_node.eval({i1: input1, i2: input2})
    expected = [[[[2, 3], [3, 4]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_i_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test specifying the input nodes by name
    loaded_result = loaded_node.eval({'i1': input1, 'i2': input2})
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval({'i1': input1, 'i2': input2})
    assert np.allclose(loaded_result, expected)
Beispiel #3
0
def init():
    # download popular data, models
    nltk.download('popular')

    from cntk.ops.functions import load_model
    # load the model and dictionary file
    share_path = os.environ[
        'AZUREML_NATIVE_SHARE_DIRECTORY'] if 'AZUREML_NATIVE_SHARE_DIRECTORY' in os.environ else 'outputs/'

    global model
    model = load_model(os.path.join(share_path, 'model.cmf'))

    global dictionary
    with open('dictionary.txt', 'r', encoding='utf-8') as f:
        dictionary = f.read().rstrip('\r\n').split('\n')

    global vocab_size
    vocab_size = len(dictionary)

    global sent_normalizer
    sent_normalizer = SentenceNormalizer(dictionary=dictionary)

    global labels
    with open('labels.txt', 'r') as f:
        labels = f.read().strip().split('\n')
Beispiel #4
0
def load_and_sample(model_filename,
                    vocab_filename,
                    prime_text='',
                    use_hardmax=False,
                    length=1000,
                    temperature=1.0):

    # load the model
    model = load_model(model_filename)

    # load the vocab
    chars = [c[0] for c in open(vocab_filename).readlines()]
    char_to_ix = {ch: i for i, ch in enumerate(chars)}
    ix_to_char = {i: ch for i, ch in enumerate(chars)}

    output = sample(model,
                    ix_to_char,
                    len(chars),
                    char_to_ix,
                    prime_text=prime_text,
                    use_hardmax=use_hardmax,
                    length=length,
                    temperature=temperature)

    ff = open('output.txt', 'w', encoding='utf-8')
    ff.write(output)
    ff.close()
Beispiel #5
0
def load_and_sample(model_filename,
                    vocab_filename,
                    prime_text='',
                    use_hardmax=False,
                    length=1000,
                    temperature=1.0):

    # load the model
    model = load_model(model_filename)

    # load the vocab
    vocab_filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                  vocab_filename)
    chars = [c[0] for c in open(vocab_filepath).readlines()]
    char_to_ix = {ch: i for i, ch in enumerate(chars)}
    ix_to_char = {i: ch for i, ch in enumerate(chars)}

    return sample(model,
                  ix_to_char,
                  len(chars),
                  char_to_ix,
                  prime_text=prime_text,
                  use_hardmax=use_hardmax,
                  length=length,
                  temperature=temperature)
Beispiel #6
0
def predictView(request):

    model = load_model(os.path.join(settings.BASE_DIR, "data/myModel.model"))

    post_data = request.POST.items()

    pd = [p for p in post_data]

    imgData1 = pd[1][0].replace(" ", "+")

    imgData1 += "=" * ((4 - len(imgData1) % 4) % 4)

    filename = ''.join([
        random.choice(string.ascii_letters + string.digits) for n in range(32)
    ])

    convertImage(imgData1, filename)

    image = Image.open(filename + '.png').convert('1')

    image.thumbnail((28, 28), Image.ANTIALIAS)

    image_np = np.array(image.getdata()).astype(int)
    image_np_expanded = np.expand_dims(image_np, axis=0)

    predicted_label_probs = model.eval({model.arguments[0]: image_np_expanded})

    data = np.argmax(predicted_label_probs, axis=1)

    return JsonResponse({"data": str(data[0])})
Beispiel #7
0
def init_server():
    global labels
    global model
    global features_by_range
    global approval_ratings
    global features_by_day
    global articles_for_day
    print('Initializing server')
    approval_ratings, political_article_corpora = Runner.init_corpora()
    features_by_day = Runner.corpora_to_day_features(political_article_corpora)
    features_by_range = Runner.combine_day_ranges(features_by_day,
                                                  approval_ratings)
    print('Loading model from disk: ' + Config.TARGET_MODEL)
    print('Working...')
    model = load_model(Config.MODEL_DIR + Config.TARGET_MODEL)
    print('Done.')
    print('Loading labels from disk: ' + Config.TARGET_LABELS)
    print('Working...')
    with open(Config.DATA_DIR + Config.TARGET_LABELS, mode='rb') as f:
        labels = pickle.load(f)
    print('Done.')

    print('Loading historical articles...')
    nyt_article_archive = json.load(
        open('../data/NYT_Articles_October_1998.json', 'r'))
    article_list = nyt_article_archive['response']['docs']
    for article in article_list:
        article_date = parse(article['pub_date'])
        articles_for_day[article_date.day].append({
            'headline':
            article['headline']['main'],
            'content':
            article['lead_paragraph']
        })
Beispiel #8
0
def process(image, model) :
    feature_file = get_features(image)
    
    file = open('feature.txt', 'w')
    file.write(feature_file)
    file.close()
    
    predict_image('feature.txt', load_model(model))
Beispiel #9
0
def feval(streamf):
    z = load_model(".\\Model\\model.cmf")
    input_map = {
        z.arguments[0]: streamf.streams.features,
    }
    dat1 = streamf.next_minibatch(1000, input_map=input_map)
    output = z.eval(dat1)
    for i in range(len(output)):
        print(output[i])
Beispiel #10
0
def lstm(qry, ans, ans2):
    # Get the model
    query_vector = load_model("models/query_vector.model")
    answer_vector = load_model("models/answer_vector.model")
    # Get the data file
    value = getVarFromFile("variables.txt")
    queryf = open(value.query_wf)
    ansf = open(value.answer_wf)

    query_wl = [line.rstrip('\n') for line in queryf]
    answers_wl = [line.rstrip('\n') for line in ansf]
    query_dict = {query_wl[i]: i for i in range(len(query_wl))}
    answers_dict = {answers_wl[i]: i for i in range(len(answers_wl))}
    queryf.close()
    ansf.close()

    # let's run a sequence through
    qry_idx = [query_dict[w + ' ']
               for w in qry.split()]  # convert to query word indices
    ans_idx = [answers_dict[w + ' ']
               for w in ans.split()]  # convert to answer word indices
    ans2_idx = [answers_dict[w + ' ']
                for w in ans2.split()]  # convert to fake answer word indices

    # Create the one hot representations
    qry_onehot = np.zeros([len(qry_idx), len(query_dict)], np.float32)
    for t in range(len(qry_idx)):
        qry_onehot[t, qry_idx[t]] = 1

    ans_onehot = np.zeros([len(ans_idx), len(answers_dict)], np.float32)
    for t in range(len(ans_idx)):
        ans_onehot[t, ans_idx[t]] = 1

    ans2_onehot = np.zeros([len(ans2_idx), len(answers_dict)], np.float32)
    for t in range(len(ans2_idx)):
        ans2_onehot[t, ans2_idx[t]] = 1

    qry_embedding = query_vector.eval([qry_onehot])
    ans_embedding = answer_vector.eval([ans_onehot])
    ans2_embedding = answer_vector.eval([ans2_onehot])
    qry_ans_similarity = 1 - cosine(qry_embedding, ans_embedding)
    qry_ans2_similarity = 1 - cosine(qry_embedding, ans2_embedding)
    return qry_ans_similarity, qry_ans2_similarity
def init():
  global trainedModel, mem_after_init

  start = t.default_timer()
  # Load the model from disk and perform evals
  trainedModel = load_model('resnet.dnn')
  end = t.default_timer()

  loadTimeMsg = "Model loading time: {0} ms".format(round((end-start)*1000, 2))
  logger.info(loadTimeMsg)
Beispiel #12
0
def test_load_save_constant(tmpdir):
    c = constant(value=[1, 3])
    root_node = c * 5

    result = root_node.eval()
    expected = [[[[5, 15]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'c_plus_c.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval()
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval()
    assert np.allclose(loaded_result, expected)
Beispiel #13
0
def test_load_save_constant(tmpdir):
    c = constant(value=[1,3])
    root_node = c * 5

    result = root_node.eval()
    expected = [[[[5,15]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'c_plus_c.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval()
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval()
    assert np.allclose(loaded_result, expected)
def init():
    global trainedModel, mem_after_init

    start = t.default_timer()
    # Load the model from disk and perform evals
    trainedModel = load_model('resnet.dnn')
    end = t.default_timer()

    loadTimeMsg = "Model loading time: {0} ms".format(
        round((end - start) * 1000, 2))
    logger.info(loadTimeMsg)
Beispiel #15
0
def feval(streamf):
    z = load_model(".\\Model\\model.cmf")
    input_map = {
        z.arguments[0]: streamf.streams.spread,
        z.arguments[1]: streamf.streams.high,
        z.arguments[2]: streamf.streams.low,
        z.arguments[3]: streamf.streams.volume
    }
    dat1 = streamf.next_minibatch(1000, input_map=input_map)
    output = z.eval(dat1)
    for i in range(len(output)):
        print(output[i])
Beispiel #16
0
def load_and_sample(model_filename, vocab_filename, prime_text='', use_hardmax=False, length=1000, temperature=1.0):
    
    # load the model
    model = load_model(model_filename)
    
    # load the vocab
    vocab_filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), vocab_filename)
    chars = [c[0] for c in open(vocab_filepath).readlines()]
    char_to_ix = { ch:i for i,ch in enumerate(chars) }
    ix_to_char = { i:ch for i,ch in enumerate(chars) }
        
    return sample(model, ix_to_char, len(chars), char_to_ix, prime_text=prime_text, use_hardmax=use_hardmax, length=length, temperature=temperature)
Beispiel #17
0
def test_load_save_unique_input(tmpdir):
    i1 = input_variable((1,2), name='i1')
    root_node = softmax(i1)

    input1 = [[[1,2]]]
    result = root_node.eval(input1)
    expected = [[[[ 0.268941,  0.731059]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test specifying the only value for an unique input
    loaded_result = loaded_node.eval(input1)
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval(input1)
    assert np.allclose(loaded_result, expected)
Beispiel #18
0
def test_load_save_unique_input(tmpdir):
    i1 = input_variable((1, 2), name='i1')
    root_node = softmax(i1)

    input1 = [[[1, 2]]]
    result = root_node.eval(input1)
    expected = [[[[0.268941, 0.731059]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test specifying the only value for an unique input
    loaded_result = loaded_node.eval(input1)
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval(input1)
    assert np.allclose(loaded_result, expected)
Beispiel #19
0
def test_load_save_input_legacy_names(tmpdir):
    i1 = input_variable((1,2), name='i1')
    root_node = abs(i1)
    input1 = [[[-1,2]]]

    result = root_node.eval({i1: input1})
    expected = [[[[1,2]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_c_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test specifying the input node names by order
    loaded_result = loaded_node.eval([input1])
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval([input1])
    assert np.allclose(loaded_result, expected)
Beispiel #20
0
def test_load_save_input(tmpdir):
    i1 = input_variable((1, 2), name='i1')
    root_node = abs(i1)
    input1 = [[[-1, 2]]]

    result = root_node.eval({i1: input1})
    expected = [[[[1, 2]]]]
    assert np.allclose(result, expected)

    filename = str(tmpdir / 'i_plus_c_0.mod')
    root_node.save_model(filename)

    loaded_node = load_model(filename)

    # Test spefying the input node names by order
    loaded_result = loaded_node.eval([input1])
    assert np.allclose(loaded_result, expected)

    filename = filename + '.legacy'
    save_as_legacy_model(root_node, filename)
    loaded_node = load_model(filename)
    loaded_result = loaded_node.eval([input1])
    assert np.allclose(loaded_result, expected)
Beispiel #21
0
def load_and_sample(model_filename, vocab_filename, prime_text='', use_hardmax=False, length=1000, temperature=1.0):
    
    # load the model
    model = load_model(model_filename)
    
    # load the vocab
    chars = [c[0] for c in open(vocab_filename).readlines()]
    char_to_ix = { ch:i for i,ch in enumerate(chars) }
    ix_to_char = { i:ch for i,ch in enumerate(chars) }
        
    output = sample(model, ix_to_char, len(chars), char_to_ix, prime_text=prime_text, use_hardmax=use_hardmax, length=length, temperature=temperature)
    
    ff = open('output.txt', 'w', encoding='utf-8')
    ff.write(output)
    ff.close()
Beispiel #22
0
def test_lm(config):
    model_file_path = config.model_file_path
    model = load_model(model_file_path)
    result_file = open('result.txt', 'w')

    token_to_id_path = config.token_to_id_path
    slot_value_path = config.slot_value_path
    segment_begin = config.segment_begin
    segment_end = config.segment_end

    test_file_path = config.test_file_path
    sv_test_file_path = config.sv_test_file_path
    with open(test_file_path,'r') as f:
        test_lines = f.readlines()
    with open(sv_test_file_path,'r') as f:
        sv_test_lines = f.readlines()

    sequence_length = config.sequence_length
    sequences_per_batch = config.sequences_per_batch
    hidden_dim = config.hidden_dim
    overgen = config.overgen
    beamwidth = config.beamwidth
    decode = config.decode 

    data = DataReader('', '', segment_begin, segment_end, token_to_id_path, slot_value_path)
    begin_sentence_id = data.segment_begin_id
    end_sentence_id = data.segment_end_id
    id_to_token = data.id_to_token 

    vocab_dim = data.vocab_dim
    sv_dim = data.sv_dim
    
    for features, svs, hh, cc, labels, token_count in data.minibatch_generator(test_lines, sv_test_lines, sequence_length, sequences_per_batch, hidden_dim, sv_dim):
        cnt = 0
        while cnt < len(features):
            # just input the first vector, begin sentence vector
            fe1 = [np.array([features[cnt][0].tolist()], dtype=np.float32)]
            sv1 = [np.array([svs[cnt].tolist()], dtype=np.float32)]
            hh1 = [np.array([hh[cnt].tolist()], dtype=np.float32)]
            cc1 = [np.array([cc[cnt].tolist()], dtype=np.float32)]
            if decode == 'beam':
                result = beamsearch(model, vocab_dim, 100, fe1, hh1, cc1, sv1, id_to_token, overgen, beamwidth, begin_sentence_id, end_sentence_id)
              
            for res in result:
                result_file.write(res.strip() + '\n')
            cnt += 1
    result_file.close()
 def _load_models(self):
     self._target_net = load_model('trainedModels/Target_net')
     self._action_value_net = load_model('trainedModels/Action_vale_net')
     print('Action value and Target model loaded')
def Recategorize():
    print('startingRecategorization')
    #f = open(output,'a+')
    #reader_test  = create_reader(os.path.join(data_path, 'Animals.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), False)
    Paths = [
        "E:/img/Animals2/Rabbit/", "E:/img/Animals2/Racoon/",
        "E:/img/Animals2/Skunk/", "E:/img/Animals2/Weasel/",
        "E:/img/Animals2/Bobcat/", "E:/img/Animals2/Cat/",
        "E:/img/Animals2/Chicken/", "E:/img/Animals2/Coyote/",
        "E:/img/Animals2/Deer/", "E:/img/Animals2/Dog/",
        "E:/img/Animals2/Duck/", "E:/img/Animals2/Eagle/",
        "E:/img/Animals2/Hawk/", "E:/img/Animals2/MountainLion/",
        "E:/img/Animals2/Owl/", "E:/img/Animals2/Possum/",
        "E:/img/Animals2/Robin/", "E:/img/Animals2/Squirrel/",
        "E:/img/Animals2/Woodpecker/", "E:/img/Animals2/Humans/",
        "E:/img/Animals2/BlueJay/", "E:/img/Animals2/Backgrounds/",
        "E:/img/Animals2/Bear/"
    ]
    #Paths = ["E:/img/Animals2/Backgrounds/"]
    CategoriesPass = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    CategoriesFail = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    MisCategoriesFail = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    ind = 0
    j = 0
    z = load_model(
        "E:/img/Animals2/Models/ConvNet_CIFAR10_DataAugModelEvolveModel.dnn")
    for mypath in Paths[0:23]:
        print('path:' + mypath)
        onlyfiles = [fl for fl in listdir(mypath) if fl.endswith('.jpeg')]
        length = len(onlyfiles)
        i = 0
        for fl2 in onlyfiles:
            #decide = fl2.split('_')
            #fl1 = fl2.replace('2.bmp','1.bmp')
            #length2 = fl2.index(".") +2
            #manipulate path to pull 2 images and turn into label and features.
            #flName = fl2[:length2]
            #ind = partName.index(flName)
            #        label = indexLabels(ind,25)
            #        labels = "%s" %label
            #        labels = labels.replace(',', '')
            #        labels = labels.replace('[', '')
            #        labels = labels.replace(']', '')
            #pth1 =mypath+fl1
            pth2 = mypath + fl2
            #        img_vec1 = flattenImages(pth2)
            #        features = "%s" %img_vec1
            #        features = features.replace(',', '')
            #        features = features.replace('[', '')
            #        features = features.replace(']', '')
            #img_vec2 = flattenImagesBW(pth2,directory + 'S4b/'+fl2)
            #unflat = unflattenImagesBW(img_vec2,100,100)
            #unflat.save(directory + 'Sout/'+fl2)
            #outputs = "%s" %img_vec2
            #outputs = outputs.replace(',', '')
            #outputs = outputs.replace('[', '')
            #outputs = outputs.replace(']', '')
            #        f.write('|labels ')
            #        f.writelines(labels)
            #resizeImage(pth2,directory + "Animals/" + fl2)
            #img = Image.open(directory + "Animals/" + fl2)
            #pic = np.array(img, dtype=np.float32)
            #img.show()
            #pic = np.ascontiguousarray(np.transpose(pic, (2, 0, 1)))
            #print (pic)
            pic = flattenImages(mypath + fl2)
            #evalu = z.eval(pic)
            #print (evalu)
            predictions = np.squeeze(z.eval(pic))
            top_class = np.argmax(predictions)
            #print (mypath,top_class,predictions)

            if top_class == ind:
                #img = pic.reshape([100,100,3])
                #imgplot = plt.imshow(img)
                #print(Paths[top_class])
                #print ('count: ', i)
                #plt.ion()
                #plt.pause(0.2)
                #plt.show()
                #plt.close()
                #else:
                #Percent = 100*((predictions[ind])/(sum(predictions[0:21])))
                #print("Success!!!!!!!!!!!!!!!!!!!!!!!!!!", Percent)
                #print (mypath,top_class,predictions)
                #print(pth2)
                CategoriesPass[ind] = CategoriesPass[ind] + 1
            else:
                #Percent = 100*((predictions[ind])/(sum(predictions[0:23])))
                #PercentT =100*((predictions[top_class])/(sum(predictions[0:15])))
                #print("Fail!", Percent, PercentT, Paths[top_class])
                CategoriesFail[ind] = CategoriesFail[ind] + 1
                MisCategoriesFail[top_class] = MisCategoriesFail[top_class] + 1
                if (predictions[ind] <= 0):
                    print("SuperFail!", mypath, predictions, predictions[ind])
                    #img = Image.open(mypath + fl2)
                    #move really bad to processing
                    try:
                        os.rename(pth2, Paths[top_class] + fl2)
                    except:
                        continue
                    #img.save("E:/img/Animals/Rejected/" + Paths[top_class][15:18] + fl2 )
                    #imgplot = plt.imshow(img)
                    #imgplot.fname = fl2
                    print(Paths[top_class])
                    print('count: ', i)
                    #plt.ion()
                    #plt.pause(.1)
                    #plt.show()
                    #plt.close()

            i = i + 1
            j = j + 1
        ind = ind + 1

    print(CategoriesPass)
    print(CategoriesFail)
    print(MisCategoriesFail)
    print('done')
Beispiel #25
0
def init():
    global model
    # Load CNTK model
    model = load_model("model/solar_2000ep.dnn")
Beispiel #26
0
    def __init__(
            self,
            input_shape,
            nb_actions,
            gamma=0.99,
            explorer=LinearEpsilonAnnealingExplorer(
                1, 0.1, 10),  #start, end, steps 100000
            learning_rate=0.00025,
            momentum=0.95,
            minibatch_size=16,
            memory_size=500000,
            train_after=10000,
            train_interval=4,
            target_update_interval=10000,
            monitor=True):
        self.input_shape = input_shape
        self.nb_actions = nb_actions
        self.gamma = gamma

        self._train_after = train_after
        self._train_interval = train_interval
        self._target_update_interval = target_update_interval

        self._explorer = explorer
        self._minibatch_size = minibatch_size
        self._history = History(input_shape)
        self._memory = ReplayMemory(memory_size, input_shape[1:], 4)
        self._num_actions_taken = 0

        # Metrics accumulator
        self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], []

        # Action Value model (used by agent to interact with the environment)
        with default_options(activation=relu, init=he_uniform()):
            self._action_value_net = Sequential([
                Convolution2D((8, 8), 16, strides=4),
                Convolution2D((4, 4), 32, strides=2),
                Convolution2D((3, 3), 32, strides=1),
                Dense(256, init=he_uniform(scale=0.01)),
                Dense(nb_actions, activation=None, init=he_uniform(scale=0.01))
            ])
            #dense 256
        self._action_value_net.update_signature(Tensor[input_shape])

        # Target model used to compute the target Q-values in training, updated
        # less frequently for increased stability.
        self._target_net = self._action_value_net.clone(CloneMethod.freeze)

        # Function computing Q-values targets as part of the computation graph
        @Function
        @Signature(post_states=Tensor[input_shape],
                   rewards=Tensor[()],
                   terminals=Tensor[()])
        def compute_q_targets(post_states, rewards, terminals):
            return element_select(
                terminals,
                rewards,
                gamma * reduce_max(self._target_net(post_states), axis=0) +
                rewards,
            )

        # Define the loss, using Huber Loss (more robust to outliers)
        @Function
        @Signature(pre_states=Tensor[input_shape],
                   actions=Tensor[nb_actions],
                   post_states=Tensor[input_shape],
                   rewards=Tensor[()],
                   terminals=Tensor[()])
        def criterion(pre_states, actions, post_states, rewards, terminals):
            # Compute the q_targets
            q_targets = compute_q_targets(post_states, rewards, terminals)

            # actions is a 1-hot encoding of the action done by the agent
            q_acted = reduce_sum(self._action_value_net(pre_states) * actions,
                                 axis=0)

            # Define training criterion as the Huber Loss function
            return huber_loss(q_targets, q_acted, 1.0)

        # Adam based SGD
        lr_schedule = learning_rate_schedule(learning_rate, UnitType.minibatch)
        m_schedule = momentum_schedule(momentum)
        vm_schedule = momentum_schedule(0.999)
        l_sgd = adam(self._action_value_net.parameters,
                     lr_schedule,
                     momentum=m_schedule,
                     variance_momentum=vm_schedule)

        self._metrics_writer = TensorBoardProgressWriter(
            freq=1, log_dir='metrics', model=criterion) if monitor else None
        self._learner = l_sgd
        self._trainer = Trainer(criterion, (criterion, None), l_sgd,
                                self._metrics_writer)
        # if os.path.isfile('./cnnNetwork_CheckpointRightGoal.dnn'):
        # if os.path.isfile('./cnnNetwork_Checkpoint.dnn'):
        #if os.path.isfile('./cnnNetwork_CheckpointLeftGoal.dnn')
        if os.path.isfile('./savednetwork.dnn'):
            self._action_value_net = load_model("./savednetwork.dnn")
            self._target_net = self._action_value_net.clone(CloneMethod.freeze)
import time
import argparse

from IPython.display import Image as display
from resizeimage import resizeimage

size = 32

label_lookup = [
    "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse",
    "ship", "truck"
]

#z = load_model('./VGG Models/pred_vgg9_300_400.dnn')
#z = load_model('./VGG Models/pred_vgg9.dnn')
z = load_model('./pred_vgg9_300_400.dnn')

arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-d",
                        "--image_dir",
                        type=str,
                        default="./images",
                        required=True,
                        help="the directory to get test images")

args = vars(arg_parser.parse_args())

images_dir = f"{args['image_dir']}"

print(f"Image Directory: {images_dir}")
Beispiel #28
0
from cntk.ops.functions import load_model
from PIL import Image
import numpy as np

modelName = "ConvNet_mytrain_29.dnn"
z = load_model(modelName)

#########################
count_total = 0
count_correct = 0

for type0 in range(1, 31):
    rgb_image = np.asarray(Image.open("0/" + str(type0) + ".png"),
                           dtype=np.float32) - 128
    bgr_image = rgb_image[..., [2, 1, 0]]
    pic = np.ascontiguousarray(np.rollaxis(bgr_image, 2))
    predictions = np.squeeze(z.eval({z.arguments[0]: [pic]}))
    top_class = np.argmax(predictions)
    print("This is predictions")
    print(predictions)
    print("Most possible class for \"file name :" + "0/" + str(type0) +
          ".png" + "\"")
    print(top_class)

    if (top_class == 0):
        count_correct += 1
    count_total += 1
for type1 in range(1, 31):
    rgb_image = np.asarray(Image.open("1/" + str(type1) + ".png"),
                           dtype=np.float32) - 128
    bgr_image = rgb_image[..., [2, 1, 0]]
from cntk.ops.functions import load_model
from PIL import Image
import time
import argparse

from IPython.display import Image as display
from resizeimage import resizeimage

size = 32

label_lookup = [
    "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse",
    "ship", "truck"
]

z = load_model('./pred_vgg9.dnn')

arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-d",
                        "--image_dir",
                        type=str,
                        default="./",
                        required=True,
                        help="the directory to get test images")

args = vars(arg_parser.parse_args())

images_dir = f"{args['image_dir']}"

print(f"Image Directory: {images_dir}")
Beispiel #30
0
import os
import json
import numpy as np
from cntk.ops.functions import load_model

model = load_model("D:/home/site/wwwroot/trained_model")
postreqdata = json.loads(open(os.environ['req']).read())
a = postreqdata["a"]
b = postreqdata["b"]
result = model.eval({model.arguments[0]: [[a, b]]})
print(result)
response = open(os.environ['res'], 'w')
response.write(str(np.argmax(result)))
response.close()
# random words instead of prompting.


def get_token(token2id, token_id):
    return list(token2id.keys())[list(token2id.values()).index(token_id)]


def get_closest_words(sorted_indices, token2id, i, limit):
    words = []
    for j in range(limit):
        words.append(get_token(token2id, sorted_indices[i][j]))

    return words


z = load_model(os.path.join(os.getcwd(), "word2vec_checkpoint"))
weights = z.E.value
vocab_dim = weights.shape[0]

max_test_words = 20  #vocab_dim
max_closest_words = 10

training_data = pickle.load(open('tmp_textdata.pickle', 'rb'))
token2id = training_data.token2id
id2token = {v: k for k, v in token2id.items()}

# Reduce memory usage by deleting the unused full text
training_data.text_as_id_list = []


#Calculate Euclidean distance between word vectors
Beispiel #32
0
from cntk.ops.functions import load_model
from PIL import Image
import numpy as np
z = load_model("../../../my-2/Models/resnet20_5.dnn")
rgb_image = np.asarray(Image.open("123448.png"), dtype=np.float32) - 128
bgr_image = rgb_image[..., [2, 1, 0]]
pic = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

predictions = np.squeeze(z.eval({z.arguments[0]: [pic]}))
top_class = np.argmax(predictions)
print(top_class)
		log_content	= log_content + f.read()
		f.close()

#print(log_content)
# Extract the validation errors of all epochs
result = re.findall('Finished Evaluation \[(\d+)\]: Minibatch\[\d+\-\d+\]: metric = (\d+.\d+)', log_content, flags=re.DOTALL)

# Find out the best epoch
best_model = min(result, key=lambda x: float(x[1]))
best_model = int(best_model[0])
			
#############################
#        Load model         #
#############################

model		= load_model(Models_PathAbs % best_model)
features	= model.find_by_name('features')

#############################
#      Read input data      #
#############################

reader = MinibatchSource(create_feature_deserializer(FeatureTest_PathAbs), trace_level = 1, randomize = False)

# Define mapping from reader stream to network input
input_map 				= {}
input_map[features] 	= reader.streams.features

#############################
#        Prediction         #
#############################
import os, sys
#from CNN import eval
from cntk.ops.functions import load_model
from PIL import Image
import scipy.misc
import cv2
import time

from IPython.display import Image as display

label_lookup = [
    "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse",
    "ship", "truck"
]

z = load_model('../../../DNN_Project_Implementation\pred_vgg9_300_400.dnn')

#print(z.architecture())

#img_file = resizeIt('Car.png')
#Car_3.png
rgb_image = np.asarray(Image.open("_Car_small.jpg"), dtype=np.float32) - 128
bgr_image = rgb_image[..., [2, 1, 0]]
pic = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

predictions = np.squeeze(z.eval({z.arguments[0]: [pic]}))
top_class = np.argmax(predictions)

#print("\tTOP CLASS Label: {:10s}, confidence: {:.2f}%".format(label_lookup[top_class], predictions[top_class] * 100))

#FPS:134.04600493493618 can be processed
Beispiel #35
0
from cntk.ops.functions import load_model
from PIL import Image
import numpy as np

z = load_model("ConvNet_mytrain_29.dnn")
rgb_image = np.asarray(Image.open("img.png"), dtype=np.float32) - 128
#########################

bgr_image = rgb_image[..., [2, 1, 0]]
pic = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

predictions = np.squeeze(z.eval({z.arguments[0]: [pic]}))
top_class = np.argmax(predictions)

print("This is predictions")
print(predictions)
print("Most possible class")
print(top_class)
Beispiel #36
0
def init():
    global MODEL
    MODEL = load_model(MODEL_PATH)
Beispiel #37
0
import sys
from path_helper import *

userDirectory = UserDirectory("CarRegistrationPlateDetector")

#projectName = "CarRegistrationPlate"

ModelFileName = "faster_rcnn_eval_AlexNet_e2e.model"

imageSize = (850, 850)

modelPath = os.path.abspath(os.path.join(".", "Output", ModelFileName))

print (modelPath)

model = load_model(modelPath)

imagesDir = userDirectory.getImageDir("positive")

print ("Searching for images in " + imagesDir)

imageFiles = getFilesInDirectoryByType(imagesDir, ["jpg"])

#for imageFileName in sys.argv:
for imageFileName in imageFiles:
    print ("Processing file: " + imageFileName)
    imageFileName = os.path.join(imagesDir, imageFileName)
    inMemImage = Image.open(imageFileName)
    inMemImage = inMemImage.resize(imageSize)
    
    rgb_image = np.asarray(inMemImage, dtype=np.float32) - 128